

EMISSIONS OF A LIGHT DUTY MULTIFUEL VEHICLE UNDER URBAN DRIVING CONDITIONS

Provenza Alessio,

Bonnel Pierre, Carriero Massimo, Perujo Adolfo, Weiss Martin European Commission, Directorate General Joint Research Centre (JRC), Institute for Energy and Transport, Sustainable Transport Unit Via Enrico Fermi, 2749 - 21027 Ispra (VA) - Italy

In collaboration with Dondi Davide, De Santoli Livio, Fraticelli Fabio CITERA Research Center, Rome, Italy

http://www.jrc.ec.europa.eu/

CRC Real-World Emissions Workshop – San Diego – March 25-28 2012

General background: legislation

- Directive 2009/30/EC, (fuel quality) target: reduce GHG emissions per unit of energy at least by 6% until 2020.
- Regulation 79/2009 target: ensure the proper functioning of hydrogen-powered motor vehicles by specifying harmonized safety requirements.
- No existing specific methods to type-approve vehicles fueled by H₂-CNG blends.

General background

- Assessment of transport technologies using real-world emissions measurements
- CO₂ regulations of light (EC/443/2009) and heavy-duty vehicles (on-going development of EU HDV CO2 testing procedures: Model based, real-world PEMS measurements could be used as validation test methods)
- Objective of the present research: development of data evaluation methods for real-world CO₂ emissions, to establish links with vehicle/engine characteristics and/or operating conditions (speed, road grade, etc...)

In-use emissions testing

Recent Legislative Developments:

- Publication of the PEMS based In-Service Conformity (ISC) provisions for the future EURO VI standards, (also applicable to EURO V engines)
- European PEMS Pilot Program for Non Road Mobile Machinery (NRMM) engines
- PEMS candidate method to check and to limit the Real Driving Emissions (RDE) of Light Duty Vehicles from Euro 6 standards onwards (2014)

Objectives of the study

- To develop methods to make use of the in-use emissions data collected with PEMS.
- To study the exhaust emissions as function of the CNGhydrogen in real-world driving conditions.
- To relate on-road data with test cell data
- To asses the greenhouse gasses emission reduction obtained by means of hydrogen blends.

Data used for the study

- Real-world measurements from a EURO 4 light-duty vehicle
- 5 different fuels used: Gasoline, CNG, CNG+10%H₂, CNG+20%H₂, CNG+30%H₂.

Vehicle tested on an urban route 17Km long (two tests for

Vehicle specifications

BRAND	FIAT
MODEL	Panda
YEAR	2007
DISPLACEMENT	1242 cm ³
FUEL	Gasoline CNG Hydrogen-CNG Blends
Max Power (gasoline/CNG)	44/38 kW
After treatment	3-way catalyst

PEMS installation

PEMS installation

Results: Trip averaged emissions

Trip averaged emissions

Trip averaged emissions strongly influenced by traffic conditions Difficult to have direct comparison with standard test cycle due to:

Road grade, idling, different average vehicle speed.

Averaging window approach

- Moving averaging window Distance based (4 and 11 km, using a time increment equal to the data sampling frequency)
- Data binning according to the parameters governing the vehicle dynamics and therefore the fuel consumption and the emissions
 - Average speed
 - Average road grade
 - Average relative positive acceleration (RPA)
 - Exception: Aerodynamic effects assumed to remain constant within a speed range (effect of front wind had to be neglected)
- Statistics conducted in the different bins
- Comparison with ECE (urban part of NEDC)

- Averaging reference distance = NEDC length, 11.007 km.
- Average road grade between -0.25% and 0.25%.
- Distribution of CO₂ emissions (g/km) as function of the average window speed.

- Averaging reference distance = ECE 15 length, 4.052 km.
- Average road grade between -0.25% and 0.25%.
- Distribution of CO₂ emissions (g/km) as function of the average window speed.

- Averaging reference distance = ECE 15 length, 4.052 km.
- Average road grade between -0.25% and 0.25%, max idle 33%.

• Distribution of CO_2 emissions (g/km) as function of the window relative positive acceleration in the speed bin 15-25 Km/h.

- Averaging reference distance = ECE 15 length, 4.052 km.
- Average road grade between -0.25% and 0.25%.
- Speed bin 15-25 Km/h.
- Comparison between dyno emissions and on-road emissions

- Averaging reference distance = ECE 15 length, 4.052 km.
- Average road grade between -0.25% and 0.25%.
- Speed bin 15-25 Km/h.
- Comparison between dyno emissions and on-road emissions

Conclusions: methodology

- Indicators proposed for a systematic data binning method
- RPA was found to be a good indicator to explain the variability in the CO₂ emissions at constant road grade and speed
- The averaging window method provides an efficient way to link emissions and average operating characteristics

Conclusions: results

- Use of hydrogen blends effectively reduce on-road CO₂ emissions
- NOx emission generally increase as the hydrogen content in the blend increases
- Largest spread of CO₂ results in bins corresponding to the largest RPA spread.

Special thanks to:

S. Alessandrini and F. Forni, PEMS technicians

A. Ceci, Driver

