This is an HTML version of an attachment to the Freedom of Information request 'Plastics tax'.




 
  
Ref. Ares(2018)2019372 - 16/04/2018
Ref. Ares(2020)4498708 - 31/08/2020
 
 
Life Cycle 
 
Assessment of 
grocery carrier bags 
 
 
Environmental Project 
no. 1985 
 
 
 
 
February 2018 
 
 
 
 
 
 

 
 
 
 
Publisher: The Danish Environmental Protection Agency 
 
Editors:  Valentina Bisinella, Paola Federica Albizzati, 
Thomas Fruergaard Astrup, Anders Damgaard 
 
 
The Danish Environmental Protection Agency publishes reports and papers about research and development projects 
within the environmental sector, financed by the Agency. The contents of this publication do not necessarily represent 
the official views of the Danish Environmental Protection Agency. By publishing this report, the Danish Environmental 
Protection Agency expresses that the content represents an important contribution to the related discourse on Danish 
environmental policy. 
 
Sources must be acknowledged. 
 
 
 
 
 
 
 
 
2   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

link to page 3 link to page 5 link to page 13 link to page 20 link to page 21 link to page 22 link to page 23 link to page 23 link to page 23 link to page 25 link to page 25 link to page 28 link to page 31 link to page 31 link to page 31 link to page 33 link to page 34 link to page 34 link to page 35 link to page 35 link to page 37 link to page 38 link to page 38 link to page 38 link to page 40 link to page 41 link to page 42 link to page 44 link to page 45 link to page 45 link to page 45 link to page 46 link to page 47 link to page 47 link to page 48 link to page 48 link to page 50 link to page 50 link to page 50 link to page 51  
Contents 
Contents 
3 
Executive summary – Dansk 
5 
Executive summary - English 
13 
Preface   
20 
List of Abbreviations 
21 
Key definitions 
22 
1. 
Introduction and objectives 
23 
1.1 
Background 
23 
1.2 
Aim of the study 
23 
2. 
Carrier bags 
25 
2.1 
Carrier bag types 
25 
2.2 
Carrier bags available in Denmark 
28 
3. 
LCA Methodology 
31 
3.1 
LCA goal definition 
31 
3.2 
Functional unit 
31 
3.2.1 
Reference flow 
33 
3.3 
System boundaries 
34 
3.4 
Modelling approach and allocation of multi-functionality 
34 
3.5 
Modelling of primary reuse 
35 
3.6 
Modelling of secondary reuse 
35 
3.7 
Modelling tools 
37 
3.8 
LCIA methodology and types of impacts 
38 
3.9 
Data requirements 
38 
3.9.1 
Production and distribution 
38 
3.9.2 
End-of-life 
40 
3.10 
Assumptions 
41 
3.10.1 
Assumptions on missing data 
42 
3.11 
Data quality assessment 
44 
3.11.1 
Critical assumptions 
45 
3.12 
Cut-offs 
45 
3.13 
Limitations 
45 
3.14 
Life Cycle Interpretation 
46 
3.15 
Critical review 
47 
3.16 
Format of the report 
47 
4. 
Scenarios 
48 
4.1 
Carrier bag alternatives 
48 
4.2 
End-of-life scenarios 
50 
4.2.1 
Incineration: EOL1 
50 
4.2.2 
Recycling of material: EOL2 
50 
4.2.3 
Reuse as waste bin bag: EOL3 
51 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   3 

link to page 52 link to page 52 link to page 52 link to page 52 link to page 52 link to page 53 link to page 53 link to page 53 link to page 53 link to page 53 link to page 54 link to page 54 link to page 58 link to page 61 link to page 62 link to page 65 link to page 65 link to page 66 link to page 68 link to page 69 link to page 72 link to page 74 link to page 74 link to page 76 link to page 76 link to page 79 link to page 81 link to page 83 link to page 84 link to page 86 link to page 88 link to page 89 link to page 90 link to page 92 link to page 93 link to page 96 link to page 108 link to page 109 link to page 111 link to page 114 link to page 128  
4.3 
Carrier bag scenarios 
52 
4.3.1 
LDPE carrier bags: LDPEavg, LDPEs, LDPEh, LDPErec 
52 
4.3.2 
PP carrier bags: PP, PPwov 
52 
4.3.3 
Recycled PET carrier bags: PETrec 
52 
4.3.4 
Polyester carrier bags: PETpol 
52 
4.3.5 
Starch-complexed biopolymer bags: BP 
53 
4.3.6 
Paper bags: PAP, PAPb 
53 
4.3.7 
Cotton bags: COTorg, COT 
53 
4.3.8 
Composite bags: COM 
53 
4.3.9 
LDPE waste bin bag 
53 
5. 
Life Cycle Impact Assessment 
54 
5.1 
Results for each carrier bag 
54 
5.1.1 
LDPE bags: LDPEavg, LDPEs, LDPEh, LDPErec, W 
58 
5.1.2 
PP bags: PP, PPwov 
61 
5.1.3 
Recycled PET carrier bags: PETrec 
62 
5.1.4 
Polyester bags: PETpol 
65 
5.1.5 
Comparison of fossil plastic carrier bags 
65 
5.1.6 
Biopolymer bags: BP 
66 
5.1.7 
Paper bags: PAP, PAPb 
68 
5.1.8 
Cotton and composite bags: COTorg, COT, COM 
69 
5.2 
Overview 
72 
6. 
Discussion 
74 
6.1 
Identification of the best disposal option for each carrier bag 
74 
6.2 
Which carrier bag provides the lowest environmental impact to fulfil the 
function? 

76 
6.3 
How many times should a carrier bag be reused? 
79 
6.4 
Influence on data and assumptions on the results 
81 
7. 
Sensitivity analysis: critical assumptions 
84 
7.1 
Choice of reference flow: rounding 
84 
7.2 
Secondary reuse as a waste bin bag allowed only for LDPE carriers 
86 
7.3 
Recycled LDPE 
88 
7.4 
Final remarks on sensitivity analysis 
89 
7.4.1 
Carrier bag design 
90 
8. 
Conclusions 
92 
9. 
References 
94 
Appendix A.  Life Cycle Inventories (LCIs) 
96 
Appendix B.  Marginal technologies 
108 
Appendix B.1  Marginal energy technologies 
109 
Appendix B.2  Marginal materials 
111 
Appendix C.  Additional results 
114 
Appendix D.  Critical review 
128 
4   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Executive summary – Dansk 
Konceptuel ramme 
Dette studie giver en livscyklusvurdering af produktion, brug og bortskaffelse ("vugge til grav") 
af indkøbsposer tilgængelige i danske supermarkeder i 2017. Undersøgelsen blev udført af 
DTU Miljø i perioden oktober - december 2017. 
I øjeblikket tilbyder danske supermarkeder kunderne flere indkøbsposer i forskellige materialer 
(såsom genanvendeligt og ikke-genanvendeligt plast, papir og bomuld) designet til at skulle 
bruges flere gange inden bortskaffelse. Grundet miljøpåvirkninger fra deres fremstilling, skal 
disse flerbrugsposer optimalt genbruges et vist antal gange for at kompensere for miljøpåvirk-
ningerne, hvor antallet afhænger af materialet og design. 
Studiet blev bestilt af Miljøstyrelsen med det formål at identificere indkøbsposen med den 
bedste miljøpræstation, til brug i danske supermarkeder. Studiet har til formål at identificere et 
anbefalet antal genbrug af hver indkøbspose baseret på indkøbsposernes miljøpåvirkninger 
under hele livscyklus. Studie tog højde for, at genbrug af indkøbsposerne kan forekomme 
både som primær genbrug (hvor indkøbsposen genbruges til samme funktion, som den blev 
produceret, dvs. for at transportere dagligvarer fra supermarked til hjem) eller som erstatning 
af en skraldepose i affaldsbeholdere (sekundær genbrug). 
De følgende indkøbsposer blev undersøgt: 
 
  Lavdensitets polyethylen (LDPE), 4 typer; en LDPE indkøbspose med gennemsnitlige vær-
dier, en LDPE indkøbspose med blødt håndtag, an LDPE indkøbspose med fast håndtag og 
en LDPE indkøbspose af genanvendt LDPE 
  Polypropylen (PP), 2 typer: ikke-vævet og vævet; 
  Genanvendt polyethylenterephthalat (PET); 
  Polyester (af primære PET-polymerer); 
  Stivelse-kompleksbundet biopolymer; 
  Papir, 2 typer: ubleget og bleget; 
  Bomuld, 2 typer: økologisk og konventionel; 
  Komposit materiale (jute, PP, bomuld). 
 
En undersøgelse foretaget af DTU Miljø viste, at LDPE-poser er tilgængelige for køb i alle 
danske supermarkeder, mens andre typer af indkøbsposer tilbydes som alternativer. Derfor 
blev de gennemsnitlige egenskaber ved en LDPE indkøbspose brugt som referencepose i 
studiet. Rapporten omhandler kun indkøbsposer til rådighed i danske supermarkeder i 2017, 
og omfatter ikke andre typer af poser. Rapporten fokuserer på de miljøpåvirkninger, der er 
forbundet med indkøbsposerne, og tager ikke stilling til hvad indførelsen af skatter, kunders 
holdninger eller adfærdsmæssige ændringer ville kunne have for studiet. Miljøeffekten af, at 
poserne smides som henkastet affald i naturen blev antaget som ubetydelige for danske for-
hold og blev derfor ikke inkluderet i modellen. Undersøgelsen blev kun udført for materialety-
per og poser, der allerede var på markedet. Dette betyder ikke, at andre mere optimale kom-
binationer af materialevalg og posedesign ikke kunne være relevante for fremtidig posepro-
duktion (volumen, genanvendt materiale, bæreevne osv.) 
 
Metodisk ramme 
Miljøvurderingen blev udført via livscyklusvurdering (LCA), som er en standardiseret metode, 
der tager højde for de potentielle miljøpåvirkninger forbundet med de ressourcer, der er nød-
vendige for at producere, bruge og bortskaffe produktet der evalueres samt mulige emissioner 
der kan opstå under produktion og bortskaffelse. Når materiale- og energiressourcer genvin-
des, krediteres systemet med potentielt undgåede emissioner fra primær produktion af de 
samme ressourcer. For at sammenligne indkøbsposerne tog vi højde for, hvor mange af de 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   5 

 
forskellige poser der var nødvendige for at kunne opfylde den funktion, der bliver leveret af en 
LDPE indkøbspose med gennemsnitlige egenskaber, som i studies fastsattes til: 
 
"Transportere indkøb med et gennemsnitligt volumen på 22 liter og en gennemsnitlig 
vægt på 12 kg fra et dansk supermarked til hjemmet i 2017 med en (nyindkøbt) ind-
købspose. Indkøbsposen er produceret i Europa og distribueret til Danske supermarke-
der. Efter brug, indsamles og behandles indkøbsposen i det danske affaldshåndte-
ringssystem" 
 
Som vist i Tabel I var to poser nødvendige for at opfylde funktionen i tilfælde af simple LDPE, 
recirkulerede LDPE-, biopolymer-, papir- og økologiske bomuldsposer. For disse poser, var 
enten den krævede volumen eller vægtkapacitet ikke opfyldt. Poser af økologisk og konventi-
onelt produceret bomuld blev modelleret hver for sig, for at kunne sammenligne forskellene i 
resultater for de to materialetyper, da økologisk bomuld har et lavere produktions udbytte end 
konventionelt produceret bomuld (Forster et al., 2013). Tabel I viser, at for økologisk bomuld 
skal der bruges to indkøbsposer, da volumen af den økologiske bomuldspose ikke var lige så 
stort som volumen for reference posen af LDPE. 
 
Tabel I. Forskellige indkøbsposer vurderet i denne LCA og det antal poser der kræves 
for at opfylde funktionaliteten leveret af en LDPE indkøbspose med gennemsnitlige 
egenskaber. 

Reference flow 
Indkøbspose materiale 
Indkøbspose type 
(antal poser der er nødvendige) 
Plast 
LDPE (gennemsnit) 
1 (reference pose) 
Plast 
LDPE simpel 

Plast 
LDPE fast håndtag  

Plast 
LDPE genanvendt 

Plast 
PP ikke-vævet 

Plast 
PP vævet 

Plast 
PET genanvendt 

Plast 
Polyester 

Bioplast 
Biopolymer 

Papir 
Papir, ubleget 

Papir 
Papir, bleget 

Tekstil  
Bomuld økologisk 

Tekstil 
Bomuld konventionelt  

Komposit  
Jute, PP, bomuld 

 
Miljøvurderingen blev for hver indkøbspose udført for forskellige bortskaffelsesmuligheder: 
forbrænding (EOL1); genanvendelse (EOL2); og genbrug som skraldepose inden forbrænding 
(EOL3). For alle indkøbsposer blev der taget højde for miljøpåvirkningen af produktion (anta-
ges at produceres i Europa), emballage ved fremsendelse til butik, transport til Danmark samt 
brug og bortskaffelse (som kunne forekomme i Danmark eller i Europa). Den generelle struktur 
af de inkluderede scenarier, og processer der tages i betragtning, er vist i Figur I. 
 
Miljøvurderingen blev udført for en række anbefalede miljøpåvirkninger (Europa-
Kommissionen, 2010): klimaforandringer; ozonnedbrydning; human toksicitet (kræft og ikke-
kræftvirkninger); fotokemisk ozondannelse; ioniserende stråling; partikelforurening; terrestrisk 
forsuring; terrestrisk eutrofiering; marin eutrofiering; ferskvands eutrofiering; økosystems toksi-
citet; ressourceforbrug fossilt og abiotisk; samt brug af vandressourcer. 
6   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
For hver indkøbspose blev beregnet det antal genbrug der var nødvendigt for at tilsvare refe-
renceposen af LDPE. Dette blev gjort per indkøbspose, livscyklus og påvirkningskategori un-
der forudsætning af, at X gange genbrug af en indkøbspose erstatter en tilsvarende anvendel-
se X gange af referenceposen, dvs. for hver gang en pose genbruges undgås den fulde livs-
cyklus af referenceposen. Et grafisk eksempel for primært genbrug er vist i Figur II. Ved at 
tage udgangspunkt i vugge-til-grav LCA-resultatet for alternativ indkøbspose A som LCIA1A og 
vugge- til- grav LCA-resultatet for den gennemsnitlige LDPE indkøbspose som LCIALDPE, blev 
antallet af genbrugsgange x beregnet som følger: 
 
LCIA  LCIA
A
LDPE

LCIALDPE
 
 
LCA-studiet er baseret på offentligt tilgængelige livscyklusdata (LCI) og data fra eksisterende 
studier af indkøbsposer. I udførelsen af studiet var der nogle databegrænsninger og antagel-
ser, for eksempel med hensyn til valget af referencepose, modellering af materialeproduktio-
nen og indkøbsposeproduktionen. En følsomhedsanalyse blev udført for de kritiske antagelser 
og valg der blev foretaget.  
 
 
Produktion af 
embal age 
Bortskaffelse  
Indsamling
Transport
materiale
embal age
Produktion of 
Produktion af 
Indkøbspose 
Transport
Brug
indkøbspose
materiale
Bortskaffelse  
Behandling af 
indkøbspose
Indsamling
restprodukter
(EOL1/EOL2/
EOL3)
 
Figur I. Generel struktur for alle indkøbspose scenarier vurderet i denne LCA. “EOL” 
henviser til de tre forskellige bortskaffelses scenarier. EOL1: forbrænding, EO2: genan-
vendelse, EOL3: genbrug som skraldepose. 

 
Genbrug X 
Produktion af 
Indkøbspose
gange
indkøbspose
A
EOL
(Primær 
A
(Primær brug)
genbrug)
Undgået gange
Produktion af 
Indkøbspose
indkøbspose
LDPE
EOL
LDPE
(Primær brug)
 
Figur II. Generel modellering af primær genbrug. Eksemplet illustrerer den primære 
genbrug X gange af en generisk “indkøbspose A”. Genbruget X gange tillader en und-
gået produktion, brug og bortskaffelse X gange af en reference indkøbspose af LDPE. 
                                                           
1 LCIA = life cycle impact assessment 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   7 

 
Resultater og anbefalinger 
LCA-undersøgelsen gav en række resultater, som kan være nyttige til optimering af brugen og 
bortskaffelsen af indkøbsposer til rådighed for køb i Danmark. Resultaterne refererer til de 
reference flows der er præsenteret i Tabel I.  
 
Hvad er den mest fordelagtige bortskaffelsesmulighed for hver type af indkøbspose? 
Når indkøbsposen er genbrugt så mange gange som muligt, er det bedre at genbruge 
indkøbsposen som en skraldepose, end blot at smide posen i restaffaldet, og dette er bedre 
end at aflevere posen til genanvendelse. Genanvendelse kan potentielt give større fordele i 
tilfælde af tunge plastposer, såsom poser af PP, PET og polyester. Sekundær genbrug som 
skraldepose er mest gavnlig for lette indkøbsposer, såsom poser af LDPE, papir og 
biopolymer. Når genbrug som skraldepose ikke er muligt, for eksempel når posen let prikkes 
hul i, rives i stykker eller bliver fugtig, som for papir- og biopolymerposer, er forbrænding den 
mest foretrukne løsning ud fra et miljømæssigt synspunkt. Tabel II giver et resumé af de 
opnåede resultater for hver bærerpose. 
Tabel II. Oversigt over den mest foretrukne bortskaffelsesmulighed for hver af de ind-
købsposer, der vurderes. 

Indkøbspose materiale 
Foretrukken bortskaffelsesmetode efter genbrug som indkøbspose 
Plast, LDPE 
Genbrug som skraldepose 
Plast, PP 
Genanvendelse, genbrug som skraldepose hvis muligt, ellers forbrændes 
Plast, genanvendt PET 
Genanvendelse, genbrug som skraldepose hvis muligt, ellers forbrændes 
Plast, polyester PET 
Genbrug som skraldepose hvis muligt, ellers forbrændes 
Biopolymer 
Genbrug som skraldepose hvis muligt, ellers forbrændes 
Papir 
Genbrug som skraldepose hvis muligt, ellers forbrændes 
Tekstil 
Genbrug som skraldepose hvis muligt, ellers forbrændes 
Komposit 
Genbrug som skraldepose hvis muligt, ellers forbrændes 
 
Hvilken indkøbspose giver de laveste miljøpåvirkninger? 
Generelt har LDPE-indkøbsposer, som er poser der altid kan købes i danske supermarkeder, 
de laveste miljøpåvirkninger for de fleste miljøindikatorer (Tabel III). LDPE-indkøbsposer med 
stift håndtag havde den laveste miljøpåvirkning i flertallet af de miljøpåvirknings kategorier der 
var inkluderet i dette LCA studie. Indkøbsposer, der kan give en lignende lav miljøpåvirkning 
er ublegede papir- og biopolymerposer, men for et lavere antal miljøindikatorer. Såkaldt tunge 
indkøbsposer, såsom poser af PP, PET, polyester, bleget papir og tekstilposer, skal 
genbruges flere gange for at opveje deres miljøproduktionsomkostninger. For poser af samme 
materiale havde vævede PP-indkøbsposer lavere belastning end ikke-vævede PP-poser, 
ubleget papir havde lavere påvirkning end bleget papir, og konventionelt bomuld havde lavere 
påvirkning end økologisk bomuld. 
 
Hvor mange gange skal indkøbsposer mindst genbruges? 
For alle indkøbsposer skal de genbruges så mange gange som muligt før bortskaffelse. Tabel 
IV rapporterer antal gange indkøbsposen skal genbruges for at reducere de miljømæssige 
konsekvenser, der er forbundet med alle de alternative indkøbsposer i forhold til LDPE-
indkøbsposen. Derfor refererer de tal, der er angivet i Tabel IV, til det mindste antal gange en 
pose skal genbruges. Det beregnede antal genbrug varierer, hvis kun én miljøindikator er 
observeret eller hvis alle miljøindikatorer tages i betragtning. Det beregnede antal genbrug kan 
være i overensstemmelse med den mulige levetid for PP, PET og polyester indkøbsposer, 
men kan overstige levetiden for bleget papir-, komposit- og bomuldsposer, især hvis man 
tager alle miljøindikatorer i betragtning. For LDPE-indkøbsposer var det nødvendige antal 
genbrug forholdsvis ens for de forskellige miljøpåvirkningskategorier.  
 
8   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Tabel III. Indkøbsposer med den laveste miljøpåvirkning for alle de vurderede miljøindi-
katorer. Rækkefølgen, som poserne er anført i, svarer til placering i forhold til deres 
LCA-resultater med lavest påvirkning først. Kun de tre laveste effekter er angivet. Re-
sultaterne refererer til det reference flow der er anført i Tabel I. 

Miljøpåvirknings indikator 
Indkøbspose med lavest påvirkning 
Klimaforandringer 
Papir ubleget, biopolymer, LDPE 
Ozonnedbrydning 
LDPE 
Human toksicitet, kræft 
Papir ubleget, LDPE 
Human toksicitet, ikke-kræft 
Komposit, PP, LDPE 
Fotokemisk ozondannelse 
LDPE 
Ioniserende stråling 
LDPE 
Partikelforurening 
LDPE 
Terrestrisk forsuring 
LDPE 
Terrestrisk eutrofiering 
LDPE 
Ferskvands eutrofiering 
LDPE 
Marin eutrofiering 
PP, LDPE 
Økosystems toksicitet 
LDPE 
Ressourceforbrug, fossilt 
Papir ubleget, LDPE 
Ressourceforbrug, abiotisk 
PP, LDPE 
Ressourceforbrug, vandressourcer 
LDPE, biopolymer 
 
 
For indkøbsposer af PP, PET, biopolymer og papir var det nødvendige antal genbrug højere i 
nogle kategorier end andre. Slutteligt fandtes det, at det meget høje antal genbrug for ind-
købsposer af bomuld og kompositmateriale primært skyldtes kategorien ozonnedbrydning der 
var væsentligt højere end de andre kategorier, for hvilken datasættet for produktion af 
bomuldsposen havde en væsentligt højere påvirkning end LDPE-posen.  
 
Følsomhedsanalysen af data og antagelser fremhævede vigtigheden af valget af reference 
flow, hvilket var afgørende for det beregnede antal genbrug for poser af økologisk bomuld. 
Valget af reference flow afhænger af opfyldelsen af funktionen udtrykt af den funktionelle en-
hed beskrevet ovenfor. Specielt viste resultaterne betydningen af indkøbsposens design, som 
bør fokusere på maksimering af volumen og bærekapacitet, samtidig med at mængden af 
materiale der anvendes minimeres og dermed også vægten af indkøbsposen. 
 
Vores endelige anbefalinger er følgende2: 
 
  LDPE-pose, simpel: Kan genbruges direkte som skraldepose i forhold til klimaforandringer, 
skal genbruges mindst 1 gang til indkøb når der tages højde for alle andre indikatorer. 
Genbrug som skraldepose, forbrænding. 
 
                                                           
2 Antallet af gange poserne skal genbruges for "alle indikatorer" henviser til det højeste antal blandt dem, 
der beregnes for hver påvirkningskategori. For lette indkøbsposer (LDPE, PP, PET ...) skyldes det høje 
antal en gruppe af påvirkningskategorier med samme høje værdier. Omvendt er det for komposit- og 
bomuldsposer ozonnedbrydning der er grunden til det meget høje antal gange poserne skal genbruges. 
Hvis der ses bort fra ozonnedbrydning, falder det nødvendige antal gange poserne skal genbruges fra 50 
til 1400 for konventionel bomuld, fra 150 til 3800 for økologisk bomuld og fra 0 til 740 for kompositmateri-
aleposen hvilket primært skyldes brugen af vandressourcer, men ferskvands- og terrestrisk-eutrofiering 
har lignende høje værdier. Resultater for det nødvendige antal gange poserne skal genbruges for hver 
påvirkningskategori, minimum-maksimum intervaller og gennemsnitligt antal genbrug fremgår af bilag C. 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   9 

 
Tabel IV. Beregnet antal primære genbrug nødvendigt for hver indkøbspose, med den 
optimale bortskaffelse af indkøbsposen, for at give den samme miljømæssige ydeevne 
som den gennemsnitlige LDPE indkøbspose med bortskaffelse som skraldepose inden 
forbrænding. Resultaterne refererer til det reference flow der er anført i Tabel I. 

 
LDPE gennemsnitspose, genbrug som 
skraldepose 
 
Klimaforandring 
Alle indikatorer 
LDPE simpel, genbrug som skraldepose 


LDPE fast håndtag, genbrug som skraldepose 


LDPE genanvendt, genbrug som skraldepose 


PP, ikke-vævet, genanvendelse 

52 
PP, vævet, genanvendelse 

45 
Genanvendt PET, genanvendelse 

84 
Polyester PET, genanvendelse 

35 
Biopolymer, genbrug som skraldepose og forbrænding 

42 
Ubleget papir, genbrug som skraldepose og forbræn-

43 
ding 
Bleget papir, genbrug som skraldepose og forbrænding 

433 
Økologisk bomuld, genbrug som skraldepose og for-
149 
20000 
brænding 
Konventionelt bomuld, genbrug som skraldepose og 
52 
7100 
forbrænding 
Komposit, genbrug som skraldepose og forbrænding 
23 
870 
 
 
  LDPE-pose, fast håndtag: Kan genbruges direkte som skraldepose i forhold til alle 
indikatorer. Genbrug som skraldepose, forbrænding. 
  LDPE-pose, genanvendt: Genbrug til indkøb mindst 1 gang i forhold til klimaforandringer, 
mindst 2 gange når der tages højde for alle indikatorer. Genbrug som skraldepose, 
forbrænding. 
  PP-pose, ikke-vævet: Genbrug til indkøb mindst 6 gange i forhold til klimaforandringer, 
mindst 52 gange når der tages højde for alle indikatorer. Bortskaffes med genanvendelige 
materialer, ellers genbrug som skraldepose hvis det er muligt, forbrænding. 
  PP-pose, vævet: Genbrug til indkøb mindst 5 gange i forhold til klimaforandringer, mindst 
45 gange når der tages højde for alle indikatorer. Bortskaffes med genanvendelige 
materialer, ellers genbrug som skraldepose hvis det er muligt, forbrænding. 
  PET-pose: Genbrug til indkøb mindst 8 gange i forhold til klimaforandringer, mindst 84 
gange når der tages højde for alle indikatorer; bortskaffes med genanvendelige materialer, 
genbrug som skraldepose hvis muligt, forbrænding. 
  Polyesterpose: Genbrug til indkøb mindst 2 gange i forhold til klimaforandringer, mindst 35 
gange når der tages højde for alle indikatorer; bortskaffes med genanvendelige materialer, 
ellers genbrug som skraldepose hvis muligt, forbrænding. 
  Biopolymerpose: Hvis muligt genbrug direkte som skraldepose i forhold til 
klimaforandringer, skal genbruges mindst 42 gange til indkøb når der tages højde for alle 
andre indikatorer. Genbrug som skraldepose hvis muligt, forbrænding. 
  Ubleget papirpose: Hvis muligt genbrug direkte som skraldepose i forhold til 
klimaforandringer, skal genbruges mindst 43 gange når der tages højde for alle andre 
indikatorer. Genbrug som skraldepose hvis muligt, forbrænding. 
                                                           
3 Den højeste værdi for bleget papir er sat til minimum at være den samme som ubleget papir. 
10   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
  Bleget papirpose: Genbrug til indkøb mindst 1 gang i forhold til klimaforandringer, mindst 
43 gange når der tages højde for alle indikatorer. Genbrug som skraldepose hvis det er 
muligt, ellers forbrænding. 
  Økologiske bomuldspose: Genbrug til indkøb mindst 149 gange for klimaændringer, 
mindst 20000 gange når der tages højde for alle indikatorer. Genbrug som skraldepose hvis 
det er muligt, ellers forbrænding. 
  Traditionelle bomuldspose: Genbrug til indkøb mindst 52 gange i forhold til 
klimaforandringer, mindst 7100 gange når der tages højde for alle indikatorer. Genbrug som 
skraldepose, hvis det er muligt, ellers forbrænding. 
  Kompositpose: Genbrug til indkøb mindst 23 gange i forhold til klimaforandringer, mindst 
870 gange når der tages højde for alle indikatorer. Genbrug som skraldepose, hvis det er 
muligt, ellers forbrænding. 
 
Det understreges, at hvis reference LDPE-posen genbruges til indkøb, øges det nødvendige 
antal gange de andre poser skal genbruges proportionalt. Resultaterne opnået for det 
minimale antal genanvendelses gange er beregnet for at bidrage til en videre diskussion 
mellem interessenterne om den forventede effektive levetid for hver indkøbspose i forhold til 
det beregnede antal gange poserne skal genbruges. Selvom det beregnede antal genbrug kan 
være i overensstemmelse med den funktionelle levetid for PP, PET og polyester 
indkøbsposer, kan den overgå levetiden for bleget papir-, komposit- og bomuldsindkøbsposer, 
især når man tager alle miljøindikatorer i betragtning. 
 
 
 
Resumé af det kritiske review 
 
Reviewere 
En kritisk gennemgang i henhold til ISO 14040/14044 blev udført af Line Geest Jakobsen og 
Trine Lund Neidel fra COWI A/S i Januar 2018 
 
Review processen  
Reviewet involverede følgende faser: 
 
  COWI udførte det første review i januar 2018 
  DTU svarede på de spørgsmål der blev stillet af COWI, og rettede rapporten i forhold de 
kommentarer der var enighed om i reviewet fra januar 2018 
  COWI evaluerede de rettelser der var lavet, og sammenfattede den endelige review kom-
mentar. 
 
Det kritiske review er vedhæftet i fulde i Appendix D. Hovedpunkterne fremhævet i det kritiske 
review er angivet nedenfor. 
 
LCA-rapporten er blevet gennemgået med hensyn til overholdelse af de internationale stan-
darder ISO 14040 og 14044. Rapporten viste sig i overordnet at overholde standarderne. 
Forfatterne anfører, at rapporten ikke er i overensstemmelse med standarden, da et review 
med inddragelse af et ekspertpanel ikke blev gennemført i projektfaserne. 
 
Metoden valgt til fastsættelse af den funktionelle enhed og reference flow blev verificeret ved 
en følsomhedsanalyse. Resultaterne af følsomhedsanalysen viste, at valget af reference flow 
har stor indflydelse på bæreposer med høje miljøpåvirkninger forbundet med produktion og 
poser med et lavere volumen end det, der udtrykkes i den funktionelle enhed (hovedsageligt 
økologisk bomuld). Forfatterne tilføjede en dedikeret sektion om indkøbspose design, hvor de 
giver kommentarer til den indflydelse som  indkøbspose design har på resultaterne. 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   11 

 
Det kritiske review understregede, at særlig opmærksomhed skal tillægges datakvalitetsvurde-
ring og at kritiske antagelser skal være tydeligt klargjort. Forfatterne tilføjede dedikerede afsnit 
om datakvalitetsvurdering, kritiske antagelser samt hvilken indflydelse data og antagelser har 
på resultaterne. Miljøpåvirkningen som udvalgte kritiske antagelser havde på resultaterne blev 
vurderet med en følsomhedsanalyse. 
 
Efter det første kritisk review, tilføjede forfatterne yderligere specifikationer på indkøbstyperne 
(for eksempel polyester polymertypen), justerede sprog og grammatisk fejl og tilføjede yderli-
gere detaljer for at forbedre den overordnede forståelse af rapporten. 
 
12   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Executive summary - English 
Conceptual framework 
This study provides the life cycle environmental impacts of the production, use and disposal 
(“cradle-to-grave”) of grocery carrier bags available for purchase in Danish supermarkets in 
2017. The study was carried out by DTU Environment in the period October – December 
2017. 
 
Currently, Danish supermarkets provide multiple-use carrier bags of different materials (such 
as recyclable and non-recyclable plastic, paper and cotton) designed for a multiple number of 
uses. In order to compensate the environmental impacts arising from their manufacturing 
phase, these multiple-use carrier bags need to be reused a number of times.  
 
This study was commissioned by the Danish Environmental Protection Agency (Miljøstyrelsen) 
with the aim to identify the grocery carrier bag with the best environmental performance to be 
provided in Danish supermarkets. Moreover, the Miljøstyrelsen aimed at identifying a recom-
mended number of reuse times for each carrier bag based on their life cycle environmental 
impacts. The project took into account that reuse of the carrier bag could occur both as prima-
ry reuse (where the carrier bag is reused for the same function for which it was produced, i.e. 
for carrying grocery shopping from the supermarket to the home), or replacing other products 
as waste bin liners (secondary reuse). 
 
The following types of carrier bags were studied: 
 
  Low-density polyethylene (LDPE), 4 types: an LDPE carrier bag with average characteris-
tics, an LDPE carrier bag with soft handle, an LDPE carrier bag with rigid handle and a recy-
cled LDPE carrier bag; 
  Polypropylene (PP), 2 types: non-woven and woven; 
  Recycled polyethylene terephthalate (PET); 
  Polyester (of virgin PET polymers); 
  Starch-complexed biopolymer; 
  Paper, 2 types: unbleached and bleached; 
  Cotton, 2 types: organic and conventional; 
  Composite (jute, PP, cotton). 
 
A survey conducted by DTU Environment showed that LDPE bags are always available for 
purchase in all Danish supermarkets, while other carrier bag types are provided as alterna-
tives. Therefore, the average characteristics of the LDPE carrier bag were taken as reference. 
The report considers only carrier bags available in Danish supermarkets in 2017 and it does 
not include personal bags or other carriers. The report focuses on the environmental impacts 
connected to the carrier bags, and does not consider the introduction of taxes, customers’ 
attitude or behavioural changes. The effects of littering were considered negligible for Den-
mark and not considered. The study was only done for material types already on the market, 
and the functionality of these bags. This does not mean that other more optimal combinations 
could not be relevant for future bag production (volume, recycled material, carrying capacity 
etc.). 
 
Methodological framework 
The environmental assessment of the carrier bag alternatives was carried out with Life Cycle 
Assessment (LCA), which is a standardized methodology that takes into account the potential 
environmental impacts associated with resources necessary to produce, use and dispose the 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   13 

 
product, and also the potential emissions that may occur during its disposal. When material 
and energy resources are recovered, the system is credited with the avoided potential emis-
sions that would have been necessary in order to produce these resources. In order to com-
pare the carrier bags, we took into account how many of the different types were necessary in 
order to fulfil the function provided by an LDPE carrier bag with average characteristics, which 
was: 
“Carrying one time grocery shopping with an average volume of 22 litres and with an 
average weight of 12 kilograms from Danish supermarkets to homes in 2017 with a 
(newly purchased) carrier bag. The carrier bag is produced in Europe and distributed to 
Danish supermarkets. After use, the carrier bag is collected by the Danish waste man-
agement system”. 
 
As shown in Table I, two bags were necessary to fulfil the function in the case of simple LDPE, 
recycled LDPE, biopolymer, paper, and organic cotton bags. For these bags, either the volume 
or weight holding capacity required was not fulfilled. Organic and conventional cotton bags 
were modelled separately in order to differentiate the results for the different types of material, 
since organic cotton production has a lower yield than conventional cotton (Forster et al., 
2013). Table I shows that organic cotton required two carrier bags, since the volume of the 
organic cotton bag did not fulfil the volume requirements expressed in the functional unit. 
  
Table I. Carrier bag alternatives considered for this LCA study and number of bags 
required to fulfil the functionality provided by an LDPE carrier bag with average charac-
teristics. 

Reference flow 
Material carrier bag 
Type carrier bag 
(number of bags needed) 
Plastic 
LDPE (average) 
1 (reference bag) 
Plastic 
LDPE simple 

Plastic 
LDPE rigid handle 

Plastic 
LDPE recycled 

Plastic 
PP non-woven 

Plastic 
PP woven  

Plastic 
PET recycled 

Plastic 
Polyester 

Bioplastic 
Biopolymer 

Paper 
Paper, unbleached 

Paper 
Paper, bleached 

Textile 
Cotton organic 

Textile 
Cotton conventional 

Composite 
Jute, PP, cotton 

 
The environmental assessment of each carrier bag was carried out taking into consideration 
different end-of-life options: incineration (EOL1), recycling (EOL2), and reuse as waste bin bag 
(EOL3) before being incinerated. For all carrier bag alternatives, the assessment took into 
account impacts arising from production of the carrier and its packaging (assumed to occur in 
Europe), transportation to Denmark, use, and disposal (which could occur in Denmark or with-
in Europe). The general structure of the processes taken into account is shown in Figure I. 
The environmental assessment was carried out for a range of recommended environmental 
impacts (European Commission, 2010): climate change, ozone depletion, human toxicity can-
cer and non-cancer effects, photochemical ozone formation, ionizing radiation, particulate 
matter, terrestrial acidification, terrestrial eutrophication, marine eutrophication, freshwater 
14   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
eutrophication, ecosystem toxicity, resource depletion, fossil and abiotic, and depletion of 
water resource.  
The number of primary reuse times for each carrier bag, end-of-life scenario and impact cate-
gory was calculated assuming that a reuse X times of a carrier bag allowed avoiding the cor-
responding use X times of the reference LDPE carrier bag with average characteristics, or 
more simply, for every time a bag is reused it avoids the full life cycle of the reference bag. A 
representation of primary reuse is provided in Figure II. Considering the cradle-to-grave LCA 
result for and alternative carrier bag A as LCIAA and the cradle-to-grave LCA result for the 
average LDPE carrier bag as LCIALDPE, the number of reuse times x was calculated as follows: 
 
LCIA  LCIA
A
LDPE

 
LCIALDPE
 
The LCA study was based on publicly available LCI data and data from existing LCA studies 
on grocery carrier bags. The study presented some data limitations and assumptions, for ex-
ample regarding the choice of reference flow, the modelling of material production and carrier 
bag manufacture. A sensitivity analysis was performed on critical assumptions and choices 
made. 
 
 
Production of 
End-of-life 
packaging 
Col ection
Transport
packaging
material
Production of 
Manufacture 
carrier bag 
Transport
Use
of carrier bag
material
End-of-life 
Treatment 
carrier bag 
Col ection
residues
(EOL1/EOL2/
EOL3)
 
Figure I. General structure for all carrier bag scenarios assessed in this LCA study. 
“EOL” refers to three different end-of-life options. EOL1: incineration, EO2: recycling, 
EOL3: reuse as waste bin bag. 

 
Reuse X 
Production of 
Carrier bag 
times
carrier bag
A
EOL
(Primary 
A
(Primary use)
reuse)
Avoidance times
Production of 
Carrier bag 
carrier bag 
LDPE
EOL
LDPE
(Primary use)
 
Figure II. Generic modelling of primary reuse. The example portrays the primary reuse X 
times of a generic “carrier bag A”. The reuse X times allows avoiding X times the pro-
duction, use and disposal of the reference LDPE carrier bag. 

 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   15 

 
Findings and recommendations 
The LCA study provided a number of findings that can be useful for optimizing the use and 
disposal of the carrier bags available for purchase in Denmark. The results are referred to the 
reference flows presented in Table I. 
 
Which is the most preferable disposal option for each type of carrier bag? 
After reusing the carrier bag as many times as possible, reusing the carrier bag as a waste bin 
bag is better than simply throwing away the bag in the residual waste and it is better than 
recycling. Recycling can potentially offer benefits in the case of heavy plastic bags, such as 
PP, PET and polyester. Reuse as a waste bin bag is most beneficial for light carrier bags, 
such as LDPE, paper and biopolymer. When reuse as a waste bin bag is not feasible, for ex-
ample when the bag can easily be punctured, torn, or wetted, as in the case of paper and 
biopolymer bags, incineration is the most preferable solution from an environmental point of 
view. Table II provides a summary of the results obtained for each carrier bag. 
 
Table II. Overview of the most preferable end-of-life option for each of the carrier bag 
types assessed. 

Carrier bag material 
Preferable end-of-life after normal reuse 
Plastic, LDPE 
Reuse as waste bin bag 
Plastic, PP 
Recycle, reuse as waste bin bag if possible, else incinerate 
Plastic, recycled PET 
Recycle, reuse as waste bin bag if possible, else incinerate 
Plastic, polyester PET 
Reuse as waste bin bag if possible, else incinerate 
Biopolymer 
Reuse as waste bin bag if possible, else incinerate 
Paper 
Reuse as waste bin bag if possible, else incinerate 
Textile 
Reuse as waste bin bag if possible, else incinerate 
Composite 
Reuse as waste bin bag if possible, else incinerate 
 
Which is the carrier bag providing the lowest environmental impacts? 
In general with regards to production and disposal, LDPE carrier bags, which are the bags that 
are always available for purchase in Danish supermarkets, are the carriers providing the over-
all lowest environmental impacts for most environmental indicators (Table III). In particular, 
LDPE carrier bags with rigid handle provided in general the lowest environmental impacts in 
the majority of the impact categories included in this LCA study. Carrier bags alternatives that 
can provide a similar performance are unbleached paper and biopolymer bags, but for a lower 
number of environmental indicators. Heavier carrier bags, such as PP, PET, polyester, 
bleached paper and textile bags need to be reused multiple times in order to lower their envi-
ronmental production cost. Between the same bag types, woven PP carrier bags provided 
lower impacts than non-woven PP bags, unbleached paper resulted more preferable than 
bleached paper, and conventional cotton over organic cotton. 
 
How many times should the carrier bags be reused? 
For all carrier bags, reuse as many times as possible before disposal is strongly encouraged. 
Table IV reports the number of calculated primary reuse times necessary to lower the envi-
ronmental impacts associated with all carrier bag alternatives to the levels of the LDPE carrier 
bag. Therefore, the numbers reported in Table IV refer to minimum number of reuse times. 
The number of calculated reuse times varies if only one environmental indicator is observed, 
or if all environmental indicators are taken into account. The calculated number of reuse times 
might be compliant with the lifetime of PP, PET and polyester carrier bags, but might surpass 
the lifetime of bleached paper, composite and cotton carriers, especially considering all envi-
ronmental indicators. The number of calculated reuse times was rather uniform across impact 
categories for LDPE carrier bags. For PP, PET, biopolymer and paper carrier bags, some 
16   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
impact categories presented higher reuse times than others. Lastly, the very high number of 
reuse times scored by cotton and composite bags is primarily due only to the ozone depletion 
impact category, for which the cotton production dataset provides larger impacts than the 
reference LDPE carrier bag. 
 
Table III. Carrier bags providing the lowest environmental impacts for all the environ-
mental indicators considered. The order in which the bags are listed corresponds to the 
raking of their LCA results starting from the lowest impact. Only the three lowest scor-
ing bags are listed. The results refer to the reference flow provided in Table I. 

Environmental indicator 
Carrier bags providing lowest impacts 
Climate change 
Paper unbleached, biopolymer, LDPE 
Ozone depletion 
LDPE 
Human toxicity, cancer effects 
Paper unbleached, LDPE 
Human toxicity, non-cancer effects 
Composite, PP, LDPE 
Photochemical ozone formation 
LDPE 
Ionizing radiation 
LDPE 
Particulate matter 
LDPE 
Terrestrial acidification 
LDPE 
Terrestrial eutrophication 
LDPE 
Freshwater eutrophication 
LDPE 
Marine eutrophication 
PP, LDPE 
Ecosystem toxicity 
LDPE 
Resource depletion, fossil 
Paper unbleached, LDPE 
Resource depletion, abiotic 
PP, LDPE 
Water resource depletion 
LDPE, biopolymer 
 
Table IV. Calculated number of primary reuse times for the carrier bags in the rows, for 
their most preferable disposal option, necessary to provide the same environmental 
performance of the average LDPE carrier bag, reused as a waste bin bag before incin-
eration. The results refer to the reference flow provided in Table I. 

 
LDPE average, reused as waste bin bag 
 
Climate Change 
All indicators 
LDPE simple, reused as waste bag 


LDPE rigid handle, reused as waste bag 


Recycled LDPE, reused as waste bag 


PP, non-woven, recycled 

52 
PP, woven, recycled 

45 
Recycled PET, recycled 

84 
Polyester PET, recycled 

35 
Biopolymer, reused as waste bag or incinerated 

42 
Unbleached paper, reused as waste bag or incinerated 

43 
Bleached paper, reused as waste bag or incinerated 

434 
Organic cotton, reused as waste bag or incinerated 
149 
20000 
                                                           
4 The highest value for bleached paper is set to as minimum be equal to the value for unbleached paper. 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   17 

 
Conventional cotton, reused as waste bag or incinerated 
52 
7100 
Composite, reused as waste bag or incinerated 
23 
870 
The sensitivity analysis on data and assumptions highlighted the importance of the choice of 
reference flow, which was determining for the calculated number of reuse times for organic 
cotton. The reference flow choice depends on the fulfilment of the function expressed by the 
functional unit. In particular, the results showed the importance of the carrier bags design, 
which should be focused on maximizing volume and weight holding capacity, while minimizing 
the amount of material needed and the final weight of the carrier bag. 
Our final recommendations are the following5: 
 
  Simple LDPE bags: Can be directly reused as waste bin bags for climate change, should 
be reused at least 1 time for grocery shopping considering all other indicators; finally reuse 
as waste bin bag. 
  LDPE bags with rigid handle: Can be directly reused as waste bin bags considering all 
indicators; finally reuse as waste bin bag. 
  Recycled LDPE bags: Reuse for grocery shopping at least 1 time for climate change, at 
least 2 times considering all indicators; finally reuse as waste bin bag. 
  PP bags, non-woven: Reuse for grocery shopping at least 6 times for climate change, at 
least 52 times considering all indicators; finally dispose with recyclables, otherwise reuse as 
waste bin bag if possible, lastly incinerate. 
  PP bags, woven: Reuse for grocery shopping at least 5 times for climate change, at least 
45 times considering all indicators; finally dispose with recyclables, otherwise reuse as 
waste bin bag if possible, lastly incinerate. 
  PET bags: Reuse for grocery shopping at least 8 times for climate change, at least 84 times 
considering all indicators; finally dispose with recyclables, otherwise reuse as waste bin bag 
if possible, lastly incinerate. 
  Polyester bags: Reuse for grocery shopping at least 2 times for climate change, at least 35 
times considering all indicators; finally dispose with recyclables, otherwise reuse as waste 
bin bag if possible, lastly incinerate. 
  Biopolymer bags: Can be directly reused as waste bin bags for climate change, should be 
reused at least 42 times for grocery shopping considering all other indicators. Finally, reuse 
as waste bin bag if possible, otherwise incinerate. 
  Unbleached paper bags: Can be directly reused as waste bin bags for climate change, 
should be reused at least 43 times considering all other indicators. Finally, reuse as waste 
bin bag if possible, otherwise incinerate. 
  Bleached paper bags: Reuse for grocery shopping at least 1 time for climate change, at 
least 43 times considering all indicators; reuse as waste bin bag if possible, otherwise incin-
erate. 
  Organic cotton bags: Reuse for grocery shopping at least 149 times for climate change, at 
least 20000 times considering all indicators; reuse as waste bin bag if possible, otherwise 
incinerate. 
  Conventional cotton bags: Reuse for grocery shopping at least 52 times for climate 
change, at least 7100 times considering all indicators; reuse as waste bin bag if possible, 
otherwise incinerate. 
                                                           
5 The number of times for “all indicators” refers to the highest number of reuse times among those calcu-
lated for each impact category. For light carrier bags (LDPE, PP, PET...) the high numbers of reuse times 
are given by a group of impact categories with similar high values. Conversely, for composite and cotton 
the very high number of reuse times is given by the ozone depletion impact alone. Without considering 
ozone depletion, the number of reuse times ranges from 50 to1400 for conventional cotton, from 150 to 
3800 for organic cotton, and from 0 to 740 for the composite material bag. The highest number is due to 
the use of water resource, but also to freshwater and terrestrial eutrophication. Results for the number of 
reuse times for each impact category, minimum-maximum ranges and average number of reuse times 
are provided in Appendix C. 
18   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
  Composite bags: Reuse for grocery shopping at least 23 times for climate change, at least 
870 times considering all indicators; reuse as waste bin bag if possible, otherwise incinerate. 
 
It  should  be  considered  that  if  the  reference  LDPE  bag  is  reused  for  shopping,  this  will  in-
crease  the  needed  number  of  reuse  times  for  the  other  bags  proportionally.  The  results  ob-
tained on the minimum number of reuse times are intended to raise the discussion among the 
stakeholders on the effective expected lifetime of each carrier bag. While the calculated num-
ber  of  reuse  times  might  be  compliant  with  the  functional  lifetime  of  PP,  PET  and  polyester 
carrier  bags,  it  might  surpass  the  lifetime  of  bleached  paper,  composite  and  cotton  carriers, 
especially considering all environmental indicators. 
 
 
 
Summary of the critical review 
 
Reviewers 
A critical review according to ISO 14040/14044 was performed by Line Geest Jakobsen and 
Trine Lund Neidel from COWI A/S in January 2018. 
 
Review process 
The review process involved the following phases: 
  COWI conducted the first review in January 2018. 
  DTU answered to the questions raised by COWI and corrected the report according to the 
outcomes of the review in January 2018. 
  COWI evaluated the corrections and compiled a final review statement. 
 
The critical review from COWI can be found in full in Appendix D. The main points highlighted 
in the critical review are provided below. 
 
The LCA report has been reviewed with respect to compliance with the ISO 14040 and 14044 
International Standards. The report was found to comply with the standards to a large extent. 
The authors state that the report does not comply with the standard because an exchange with 
a panel of experts was not made during the project phases.  
 
The method chosen for selecting the functional unit and reference flow was verified with a 
sensitivity analysis.  The results of the sensitivity analysis showed that the choice of reference 
flow influenced heavily the carrier bags with high impacts connected to production and with a 
lower volume than the one expressed in the functional unit (mainly organic cotton). The au-
thors added a dedicated section on carrier bag design where they provide comments on the 
influence of the carrier bag design on the results. 
 
The critical review highlighted that specific attention should have been dedicated to data quali-
ty assessment and to the clear statement of critical assumptions. The authors added dedicat-
ed sections on data quality assessment, critical assumption and on the influence on data and 
assumptions on the results. The influence of selected critical assumptions on the results was 
assessed with a sensitivity analysis. 
 
After the review, the authors added further specifications on the carrier bag types (e.g. polyes-
ter polymer type), adjusted language and typos, and added further details for improving the 
overall understanding of the report. 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   19 

 
Preface 
This study provides the life cycle environmental impacts associated with the production, use 
and disposal of selected grocery carrier bags available in Danish supermarkets in 2017.  
 
The commissioner of the LCA is the Danish Environmental Protection Agency (Miljøstyrelsen). 
The LCA was conducted by DTU Environment in the period October – December 2017, using 
the EASETECH LCA model developed by DTU Environment for the environmental assess-
ment of waste management systems and environmental technologies. The LCA was conduct-
ed for assessing and comparing the environmental impacts associated with the grocery carrier 
bags currently available in Danish supermarkets. 
 
The LCA has been conducted according to the requirements outlined in DS/EN ISO Interna-
tional Standards 14040 and 14044; however, the report is not intended to strictly comply with 
the standard. The report is intended for internal decision support at the Danish Environmental 
Protection Agency as part of a wider range of assessments aiming at investigating possible 
options for grocery carrier bags available in Danish supermarkets. The report has undergone a 
peer review process outside the project group in January 2018 by Line Geest Jakobsen and 
Trine Lund Neidel from COWI A/S.  
 
The report was prepared by Valentina Bisinella, Paola Federica Albizzati, Thomas Fruergaard 
Astrup, and Anders Damgaard from DTU Environment. 
 
DTU, February 2018 
 
 
 
 
20   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
List of Abbreviations 
General 
EOL 
End-of-life (as: “treatment”, “waste management” or “disposal”) 
EOL1 
 Incineration  
EOL2 
 Source segregation of recyclables and recycling  
EOL3 
 Reuse as a waste bin bag before incineration 
HDPE 
 High-density polyethylene 
LCA 
 Life cycle assessment 
LCI 
 Life cycle inventory 
LCIA 
 Life cycle impact assessment 
LDPE 
 Low-density polyethylene 
PE 
 Persons equivalents (normalized LCA results) 
PET 
 Polyethylene terephthalate 
PP 
 Polypropylene 

 Waste bin bag 
Carrier bag scenarios  
LDPEavg 
LDPE carrier bag, average characteristics (between LDPEs and LDPEh) 
LDPEs 
 LDPE carrier bag, simple  
LDPEh 
 LDPE carrier bag, rigid handle 
LDPErec 
 Recycled LDPE carrier bag 
PP 
 Non-woven PP carrier bag 
PPwov 
 Woven PP carrier bag 
PETrec 
 Recycled PET carrier bag 
PETpol 
 Polyester carrier bag 
BP 
 Starch-complexed biopolymer carrier bag 
PAP 
 Unbleached craft paper carrier bag 
PAPb 
 Bleached craft paper carrier bag 
 
COTorg 
 Organic cotton carrier bag 
COT 
 Conventional cotton carrier bag 
COM 
 Composite carrier bag (jute, PP, cotton) 
Acronyms for the impact categories assessed by the LCA 
CC 
 Climate change 
OD 
 Ozone depletion 
HTc 
 Human toxicity, cancer effects 
HTnc 
 Human toxicity, non-cancer effects 
POF  
 Photochemical ozone formation 
IR 
 Ionizing radiation 
PM 
 Particulate matter 
TA 
 Terrestrial acidification 
TE 
 Terrestrial eutrophication 
ME 
 Marine eutrophication 
FE 
 Freshwater eutrophication 
ET 
 Ecosystem toxicity 
RDfos 
 Resource depletion, fossil 
RD 
 Resource depletion, abiotic 
Water 
 Water resource depletion 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   21 

 
Key definitions 
Primary reuse 
Reuse for the same function for which the product was produced.  
For example, the function of grocery carrier bags is to contain and transport 
groceries and goods from the supermarkets to the homes. Primary reuse of a 
carrier bag would be reusing it for carrying goods and groceries from the 
supermarkets to the homes. 
Secondary reuse 
Reuse fulfilling a different function than the one for which the product was 
produced. 
For example, grocery carrier bags are produced to contain and transport 
groceries and goods from the supermarkets to the homes. Secondary reuse 
of a carrier bag could be used as a waste bin bag, bag for laundry, etc. Any 
reuse that does not entail carrying goods and groceries from the supermar-
kets to the homes. 
Single-use carrier bag 
Lightweight carrier bags intended to be used for one shopping trip from the 
supermarkets to the homes. 
Multiple-use carrier bag  Durable carrier bags intended to be used for multiple shopping trips from the 
supermarkets to the homes. 
Grocery carrier bag 
Bag product, usually light, resistant and capacious, with the primary function 
of containing and transporting goods and groceries from the supermarkets to 
the homes.  
Lightweight plastic 
Single-use plastic carriers, commonly made of low-density or high-density 
carrier bags 
polyethylene plastic (LDPE or HDPE) with thickness below 50 microns (Euro-
pean Commission, 1994). 
Very lightweight plastic  Small plastic carrier bags with thickness below 15 microns (European Com-
carrier bags 
mission, 1994), which are available supermarkets free of charge as primary 
packaging for loose food. 
 
 
 
 
 
22   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
 
1.  Introduction and objectives 
This study was commissioned by the Danish Environmental Protection Agency (Miljøstyrelsen) 
in order to assess the life cycle environmental impacts of the production, use and disposal of 
different grocery carrier bags available for purchase in supermarkets in Denmark in 2017. This 
Section provides the background on grocery carrier bags in Denmark and the aim of the study. 
 
1.1 
Background 
Carrier bags are used in supermarkets in order to carry grocery shopping and other items sold 
at supermarkets from the shops to the homes. Grocery carrier bags are considered a form of 
packaging and have been addressed in the European Parliament and Council Directive 
94/62/EC on packaging and packaging waste (European Commission, 1994). The Directive, 
which is currently in force, aims at limiting the production of packaging waste and promoting 
recycling, reuse and other forms of waste recovery. Lightweight plastic carrier bags are single-
use plastic carriers6, commonly made of low-density or high-density polyethylene plastic 
(LDPE or HDPE). These carriers are single-use in the sense that they are usually only used 
for one shopping trip (European Commission, 2011). The environmental concerns associated 
with plastic carrier bags include the use of non-renewable resources for production (such as 
crude oil), the environmental impacts of their disposal and the effects of littering. In particular, 
the Directive aimed at reducing the large consumption of single-use carrier bags in order to 
ultimately reduce the amounts to be disposed. 
 
Since 1993, Denmark has taken action against single-use plastic carrier bags by introducing a 
tax on retailers. Currently, Danish supermarkets provide multiple-use carrier bags of different 
materials (such as recyclable and non-recyclable plastic, paper and cotton) which can be 
bought by customers at the cash register. These types of multiple-use carrier bags are de-
signed for a multiple number of uses and are intended to last longer, therefore requiring more 
resources in their production and potentially more environmental impacts than a single-use 
carrier bag. In order to compensate the impacts arising from their manufacturing phase, multi-
ple-use carrier bags need to be reused a number of times. However, due to the functionality 
issue or customer attitude, if the reusable bags are thrown away before their desired number 
of use, the environmental impacts may surpass those of single-use bags. Moreover, reuse of 
the carrier bag can occur both as primary reuse (where the carrier bag is reused for the same 
function for which it was produced, i.e. for carrying grocery shopping from the supermarket to 
the home), or replacing other products as waste bin liners (secondary reuse). 
 
1.2 
Aim of the study 
The aim of this study is to identify the multiple-use carrier bag alternative with the best envi-
ronmental performance to be provided in Danish supermarkets. In order to do so, the study 
aims to assess the environmental impacts associated with production, distribution, use and 
disposal of the multiple-use carrier bags available for purchase in Danish supermarkets in 
2017, for a range of environmental impacts. Three end-of-life options were taken into account 
for the disposal. In particular, the study wishes to: 
 
  Identify the best disposal option for each carrier bag type within the identified end-of-life 
options; 
                                                           
6 “Lightweight plastic carrier bags” shall mean plastic carrier bags with thickness below 50 microns 
(European Commission, 1994). 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   23 

 
  Identify the multiple-use carrier bag alternative with the best environmental performance for 
each of the investigated impact categories;  
  Define the number of times a multiple-use carrier bag would need to be reused in order to 
provide a better environmental performance than another carrier bag alternative, for a range 
of environmental indicators. 
 
The study aims to obtain the number of reuse times taking into consideration primary and 
secondary reuse, as well as separate collection and recycling of the material, between the 
disposal options. 
 
The environmental assessment of the carrier bag alternatives is carried out with Life Cycle 
Assessment (LCA), a standardized methodology for quantifying environmental impacts of 
providing, using and disposing of a product or providing a service throughout its life cycle (ISO, 
2006). LCA takes into account the potential environmental impacts associated with resources 
necessary to produce, use and dispose the product, and also the potential emissions that may 
occur during its disposal. When material and energy resources are recovered, the system is 
credited with the avoided potential emissions that would have been necessary in order to pro-
duce these resources. The LCA will be carried out with the EASETECH model developed at 
DTU Environment (Clavreul et al., 2014). The goal definition of the LCA and the LCA method-
ology are provided in a dedicated Section. 
 
The LCA modelling includes the actual multiple-use carrier bag options currently available for 
purchase in Danish supermarkets, which were identified by a dedicated survey. In particular, 
the modelling takes into account the material of the carrier bag, for example including whether 
the material is virgin or recycled, recyclable or non-recyclable. The study will assess whether a 
large variation exists within carrier-bag types, in terms of weight, volume, thickness, and carry-
ing capacity.  
 
The present study only considers carrier bags available for purchase in Danish supermarkets 
in 2017. Small very lightweight plastic carrier bags7, which are available in Danish supermar-
kets free of charge as primary packaging for loose food, were excluded from the scope of this 
study, since they were not included in the 94/62/EC measures. This study does not include the 
assessment of other types of carriers, such as personal bags or bags provided by other retail-
ers. The report does not consider behavioural changes or consequences of introducing further 
economic measures. The study does not take into account economic consequences for retail-
ers and carrier bag producers. The environmental assessment does not take into account the 
effects of littering. 
 
 
 
                                                           
7 “Very lightweight plastic carrier bags” shall mean plastic carrier bags with thickness below 15 microns 
(European Commission, 1994). 
 
24   The Danish Environmental Protection Agency / LCA of grocery carrier bags 





 
2.  Carrier bags 
2.1 
Carrier bag types 
Carrier bags are provided in supermarkets with the function to carry goods and groceries from 
the supermarkets to the homes. Carrier bags must therefore be robust and large enough to 
hold a certain amount of items, while at the same time being economically convenient. Carrier 
bags can be made of plastic materials of fossil origin, such as low- or high-density polyeth-
ylene (LDPE/HDPE), polypropylene (PP), polyethylene terephthalate (PET) and polyester. 
Alternative plastic materials composed of carbon of biogenic origin can also be used, such as 
polyester-complexed starch biopolymer. Other materials used for carrier bags are paper and 
textiles. A few types of carrier bags are described below. All the bags analysed in this report 
are intended to be used multiple times.  
 
  Low-density polyethylene (LDPE) bags 
Plastic bags formed from an LDPE plastic melt, which is blown and sealed to form a bag. 
Figure 1 provides two examples of LDPE carrier bag: one with simple handle, one with a rig-
id handle. 
a) 
 
b) 
 
Figure 1. Examples of LDPE carrier bags with (a) simple handle (Paxonplastic, 2018) 
and (b) rigid handle (C-bags, 2018). 

  Non-woven polypropylene (PP) bags 
Plastic bags formed from molten filament of PP, which is spun bonded. Non-woven PP bags 
are stronger, more durable and generally larger in volume than LDPE carrier bags and are 
intended to be reused many times (Edwards and Fry, 2011). Figure 2 provides an example 
of non-woven PP bags and of the fabric type. 
 
a) 
b) 
 
 
Figure 2. Examples of non-woven PP bags (a) (Indiamart, 2018) and (b) detail of the non-
woven PP fabric (Bharatcottons, 2018). 

 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   25 





 
  Woven polypropylene (PP) bags 
Plastic bags obtained from weaving PP fibres. Just like non-woven PP bags, these bags are 
usually stronger and more durable than LDPE carrier bags. Figure 3 provides an example of 
woven PP bags and fabric. 
a) 
 
b) 
 
Figure 3. Example of a woven PP bag (a) (Indiamart, 2018b) and (b) detail of the woven 
PP fabric (Bagsupplies, 2018). 

  Recycled polyethylene terephthalate (PET) bags 
Plastic bags obtained from weaving molten fibres from recycled PET pellets. Strong and du-
rable, intended for multiple-use. An example is provided in Figure 4. 
 
Figure 4. Example of recycled PET bag (Customgrocerybags, 2018). 
  Polyester bags 
Plastic bags obtained from weaving polyester fibres. These polyester fibres are obtained 
from processing other polymer types, such as PP or PET, and are usually thinner and lighter 
than the original polymers, resulting in a very light and foldable multiple-reuse bag. An ex-
ample is provided in Figure 5. 
 
Figure 5. Example of a polyester carrier bag (Aliexpress, 2018). 
 
 
26   The Danish Environmental Protection Agency / LCA of grocery carrier bags 




 
  Biopolymer bags 
Biopolymer bags are usually composed by either polylactic acid (PLA) or starch polyester 
blends, which are compostable materials able to decompose in in aerobic environments that 
are maintained under specific controlled temperature and humidity conditions (ASTM, 2018). 
An example is provided in Figure 6. These carrier bags are usually less resistant than LDPE 
bags. The biodegradability of these polymers is debated in the scientific community. Most of 
the materials are only biodegradable in full scale facilities (compost or anaerobic) run at high 
enough temperatures, and there can still be partial plastic parts left at the end of treatment, 
In most natural environments only a small part of the plastic will degrade (Emadian et al., 
2017) 
 
Figure 6. Example of biopolymer bags (Ecostoviglie, 2018). 
  Paper bags  
Carrier bags obtained from craft paper, which is glued to form the bag. This type of carrier 
bag has become less used since the 1970s, replaced by plastic bags that do not tear when 
wet (Edwards and Fry, 2011). An example is provided in Figure 7. 
 
Figure 7. Example of a paper bag (Natuerlich-verpacken, 2018). 
  Textile bags 
Bags made of woven cotton or jute, intended to be reused many times. Textile bags can be 
made of organic or conventional textiles. Figure 8 provides an example of a cotton bag. 
 
Figure 8. Example of cotton carrier bag (Amazon, 2018). 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   27 


 
  Composite bags 
Bags made of multiple material types, such as textile and plastic. An example is provided in 
Figure 9 below, where plastic handles are attached to a jute bag. 
 
Figure 9. Example of composite bag (Topcottonbags, 2018). 
 
2.2 
Carrier bags available in Denmark 
Since this study focuses on the multiple-use carrier bag alternatives available for purchase in 
Danish supermarkets in 2017, we have conducted a survey in order to identify the carrier bag 
alternatives on which to carry out the environmental assessment. The survey was conducted 
in September – October 2017 as part of a Master thesis project work at DTU Environment 
(Alonso Altonaga, 2017). 
 
The survey involved collecting all types of carrier bags available in Danish supermarkets. The 
survey involved a total of 19 retailers: Fakta, Fakta Q, Superbrugsen, Dagli' Brugsen, Irma, 
Kvickly, Netto, Føtex food, Føtex, Bilka, 7-eleven, Rema 1000, Lidl, Aldi, Meny, Spar, Min 
købmand, Let-Køb, and Løvbjerg. The material of each carrier bag was identified based on the 
labelling on the carrier bag and it was verified with material analysis via infrared spectroscopy. 
The number of number of carrier bags surveyed per material type was reported. Then, we 
analysed the weight, volume, thickness and weight holding capacity (measured as tensile 
strength at the point where the material started to stretch or broke) for each of the carrier bags. 
 
Table 1 shows the material and the material type of the carrier bags available for purchase in 
Danish supermarkets in 2017, with detail on the retailers providing each type of bag. For each 
type of carrier bag, Table 2 provides the number of items identified by the survey, the average 
weight of the bag, the average volume, the average thickness and average weight holding 
capacity.  
 
The total number of carrier bag types available in Danish supermarkets which was identified in 
the project was 40. The virgin LDPE plastic bag was identified as the most commonly available 
bag in Danish supermarkets with 23 items. In particular, the survey indicated that an LDPE 
carrier bag can always be found for purchase in all supermarkets, regardless of the retail chain 
they belong to. Two retailers provided also LDPE bags made of recycled LDPE, on top of 
virgin LDPE plastic bags. Both virgin and recycled LDPE grocery carrier bags were found in 
two versions: one with a rigid handle (of the same material; “LDPE rigid handle” in Table 2) 
and a simple type, with a handle of the same thickness of the bag (“LDPE simple” in Table 2). 
The same retailer often provided both types of LDPE carrier bags. All remaining types of carri-
er bags were considerably less abundant, scoring a total of 1 to 3 items. This reflects the fact 
that some retailers provided other types of carrier bags as an alternative to the most common 
LDPE carrier bag. The material types of such carrier bag types were woven and non-woven 
PP, recycled PET, polyester of virgin PET fibres, biodegradable plastic, craft paper, cotton 
(organic and conventional). One bag type presented composite characteristics, with jute, PP 
and cotton materials combined. Often the alternatives to LDPE were heavier, multiple-use-
oriented carrier bags, as in the case on woven and non-woven PP, recycled PET and cotton 
28   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
bags. Nine supermarkets provided at least one alternative to the LDPE carrier bag. Irma was 
the supermarket with the largest number of alternative options for the choice of carrier bag.  
 
Table 1. Material and material type of the multiple-use carrier bags available for pur-
chase in Danish supermarkets in 2017, subdivided by retailer. (*) indicates that the 
LDPE carrier bags are available both as virgin plastic and recycled plastic. 

 
 
n
n
 
 
 
 
nd
 
 
 
 
se
se
 
od
 
n
00
a
a
Q
 
 
x
 
 
 
 
b

ug
ug
o

jerg
Material 
Type 
x fo
te
bm
Kø-
Fakt
Irma
Bilka
eleve
Lid
Aldi
Spar
vb
Fakt
Kvickly
Nett
te

-
Meny
Let

7
Rema 10

Superbr
Dagli Br
Min kø
Plastic 
LDPE simple 
X  X  X  X 
X  X  X  X  X*  X* 
X  X 
 
 
 
 
 
 
 
Plastic 
LDPE rigid handle 
X  X  X 
X  X  X  X  X 
X  X* 
X  X  X 

 
 
 
 
 
Plastic 
PP non-woven 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plastic 
PP woven  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plastic 
PET recycled 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plastic 
Polyester, PET 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bioplastic  Biopolymer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Paper 
Paper 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Textile 
Cotton organic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Textile 
Cotton conventional 
X  X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Composite  Jute, PP, cotton 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The carrier bags identified in the survey varied in terms of weight, volume, thickness and 
weight holding capacity, as presented in Table 2. We could identify a direct correlation be-
tween thickness and weight of the bag. The larger the thickness, the more material was em-
ployed and the heavier the carrier bag. Table 2 indicates that LDPE and biopolymer plastic 
bags presented the lowest average thickness and weight. When the LDPE carrier bag was 
equipped with a rigid handle, the overall average weight of the carrier bag was larger (high-
lighted in grey and italics in Table 2). Paper carrier bags presented the second-lowest average 
thickness and weight. On the other hand, woven and non-woven PP, recycled PET, PET poly-
ester, cotton and composite carrier bags presented considerably larger weight. The average 
weight holding capacity generally follows the same trend of weight of the bag and thickness, 
with thicker bags generally providing a larger holding capacity, with exception of paper bags. 
On the other hand, the volume of the bag was not related to weight or thickness. Simple LDPE 
bags presented the lowest volume, followed by biopolymer, organic cotton and LDPE bags 
with rigid handle. The largest volumes were recorded for woven PP and recycled PET bags 
 
After the first draft of the report was provided to Miljøstyrelsen and stakeholders, the stake-
holders in the project group highlighted that another conventional cotton bag was available for 
purchase from one of the retailers. This cotton bag presents a larger volume (31 litres) and 
lower weight (120 grams), which would change the average weight of the cotton bag present-
ed in Table 2 to 195 grams and a volume of 28 litres. The latter average characteristics were 
not included in the modelling, but were used in the discussion of the results. 
 
Overall, the survey allowed identifying important aspects that need to be taken into account 
when carrying out the LCA of carrier bag alternatives: 
 
  LDPE carrier bags are the most common type of carrier bag and the carrier bag type that 
can always be found in Danish supermarkets. Therefore, the LCA study should take this car-
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   29 

 
rier bag as baseline and compare how many times the other carrier bags should be reused 
in order to reach a similar environmental performance. 
  The carrier bags have considerable differences in weight, and bags with larger weight are 
likely to have larger environmental impacts due to the larger amount of material required to 
manufacture the grocery carrier bag. 
  The bags have different characteristics and cannot all cover the same functionality. The 
functional unit has to be tailored in a way that a fair comparison is provided. 
 
Table 2. Survey results of the grocery carrier bags. 
Average  Average  Average 
Average weight 
Number 
Material 
Type 
weight  volume  thickness  holding capacity 
of items 
(g) 
(L) 
(mm) 
(kg) 
Plastic 
LDPE 
23 
24.2 
22.4 
0.04 
12.0 
Plastic 
LDPE simple 
10 
17.9 
19.2 
0.04 
10.5 
Plastic 
LDPE rigid handle 
13 
29.0 
24.8 
0.05 
13.2 
Plastic 
LDPE recycled 

24.9 
21.7 
0.05 
10.7 
Plastic 
LDPE recycled, simple 

14.7 
15.0 
0.04 
8.0 
Plastic 
LDPE recycled, rigid handle 

30.0 
25.0 
0.05 
12.0 
Plastic 
PP non-woven 

137.0 
29.0 
0.50 
36.0 
Plastic 
PP woven  

118.7 
36.7 
0.35 
41.0 
Plastic 
PET recycled 

159.0 
42.0 
0.60 
45.0 
Plastic 
PET polyester 

48.0 
32.0 
0.10 
45.0 
Bioplastic  Biopolymer 

18.2 
22.0 
0.04 
12.0* 
Paper 
Paper 

44.7 
23.0 
0.12 
12.0* 
Textile 
Cotton organic 

252.0 
20.0 
1.40 
50.0 
Textile 
Cotton conventional 

232.0 
27.0 
0.93 
50.0 
Composite  Jute, PP, cotton 

282.0 
32.0 
0.70 
50.0 
* The average weight holding capacity was 12 kg, but the samples of these types of carrier bags present-
ed the highest variation of  weight holding capacity. For example, the bags  were easily torn if containing 
items with sharp edges. 
 
 
30   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
3.  LCA Methodology 
The LCA carried out for this study was conducted according to the requirements outlined in the 
International Standards 14040 and 14044 (ISO, 2006a, 2006b). The present Section provides 
a detailed description of the LCA methodology utilized for the study: the goal of the LCA, func-
tional unit and reference flow, the system boundaries, the choices for the modelling approach 
for addressing multi-functionality, the modelling tools, data requirements, impact assessment 
method, assumptions and limitations.  
 
The final receiver of the study is the Danish Environmental Protection Agency and the study 
might ultimately be used for internal decision support at the Danish Environmental Protection 
Agency as part of a wider range of assessments aiming at investigating possible options for 
grocery carrier bags. This means that even if the report could be disclosed to third parties, the 
report does not strictly comply with the standard. The reason for this lack of compliance is that 
the report has undergone external peer review by COWI A/S, but not by a panel of experts 
throughout the development of the project as required by the standard.  
 
The contract for the project did not budget for extensive data collection, which means that 
there were pre-specified limitations on the amount of data that could be gathered for the study. 
Therefore, most of the data used are based on publicly available LCI data and data from exist-
ing LCA studies on grocery carrier bags.  
 
3.1 
LCA goal definition 
The goal of this study was to provide the Danish Environmental Protection Agency with the 
potential life cycle environmental impacts associated with a range of alternative types of multi-
ple-use carrier bags. The aim of the study was to: 
 
  identify the best disposal option for each carrier bag type within the identified end-of-life 
options; 
  identify the multiple-use carrier bag alternative with the best environmental performance for 
each of the investigated impact categories;  
  identify the number of times each multiple-use bag would need to be reused to lower the 
environmental impacts connected to its production and in comparison to other carrier bag 
alternatives, based on different reuse and disposal options. 
 
The carrier bag alternatives investigated were those available for purchase in Danish super-
markets in 2017. The comparative analysis was carried out with respect to a range of envi-
ronmental impacts and taking into account three different end-of-life options: incineration, 
recycling, and secondary reuse as a waste bin bag before being incinerated. The number of 
reuse times was calculated as primary reuse, i.e. complying with the function for which the 
carrier bag was produced. The scenarios are described in detail in Section 4.  
 
The target audience of the LCA is the Danish Environmental Protection Agency. The study 
might ultimately be used for internal decision support at the Danish Environmental Protection 
Agency as part of a wider range of assessments aiming at investigating possible options for 
managing waste grocery carrier bags. 
 
3.2 
Functional unit 
The role of the functional unit definition in LCA is to ensure that the environmental assessment 
of the products is based on a fair basis for comparison, in this case the fulfilment of the same 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   31 

 
functionality. This is particularly important in the case of carrier bags, where different types and 
materials can provide different functionalities in terms of number of uses, resistance to punc-
turing and tearing, resistance to water, weight holding capacity, and so on. As explained in 
Section 2, different carrier bag types have different weight, and carrier bags intended to last 
longer, with larger thickness and weight, commonly require more resources for their production 
and therefore are likely to provide larger environmental impacts than lighter bags on a bag-to-
bag comparison.  
 
Previous LCA studies on carrier bags have compared different carrier bag types based func-
tional unit such as “carrying grocery shopping to the home for a defined amount of time (and 
amount of items) in a defined year” (i.e. Environment Agency, 2011; Environment Australia, 
2002). These studies calculated the number of each type of bag required to fulfil the defined 
function, where the impacts associated with multiple-use carrier bags were “discounted”, 
meaning that the environmental impacts associated with these bags were divided by the num-
ber of reuse times expected for that type of bag (Edwards and Fry, 2011). 
 
For this study, we defined a functional unit that allowed a fair basis for comparison for the 
grocery carrier bags, but that also allowed to identify the number of required reuse times on 
the basis of the environmental impacts associated with each bag, instead of using initial as-
sumptions on the potential carrier bag reuse time and overall lifetime. Then, the calculated 
number of reuse times based on environmental performance is intended to raise the discus-
sion among the stakeholders on the effective expected lifetime of each carrier bag. The func-
tional unit chosen for this study was: 
 
Carrying  one  time  grocery  shopping  with  an  average  volume  of  22  litres  and  with  an 
average  weight  of  12  kilograms  from  Danish  supermarkets  to  homes  in  2017  with  a 
(newly purchased) carrier bag. The carrier bag is produced in Europe and distributed to 
Danish supermarkets. After use, the carrier bag is collected by the Danish waste man-
agement system. 

The functional unit chosen corresponds to carrying grocery shopping home for one shopping 
with a virgin LDPE carrier bag with average characteristics. The volume and the weight for the 
grocery shopping specified in the functional unit correspond to the average volume and weight 
holding capacity of the carrier bag always available in all Danish supermarkets, which is virgin 
LDPE. Ideally, the customer at the Danish supermarket could buy this type of bag for every 
shopping. This type of functional unit allows comparing different types of carrier bags as if they 
were all bought at the same time for one shopping. The volume and weight chosen allow com-
paring the other bag types to the most common carrier bag options: some carrier bags will not 
fulfil the volume or weight holding requirement, therefore needing a purchase of two instead of 
one.  
 
The carrier bags considered for this study are assumed to be produced in Europe and distrib-
uted to Danish supermarkets. After being used, the bags are collected within the Danish waste 
management system, which handles also the packaging required for the distribution of the 
bags.  
 
The number of reuse times for the carrier bag alternatives will be calculated as: how many 
times would this alternative carrier bag type need to be reused in order to provide a better 
environmental performance than an average virgin LDPE carrier bag, while fulfilling the same 
function? The functional unit defined for this study did not cover prevention strategies, nor 
consumer behaviour or behavioural changes. The functional unit does not target a specific 
group or age of customers and does not cover typical or average shopping preferences or 
behaviour.  
 
 
32   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
3.2.1  Reference flow 
The reference flow was calculated for each bag type, and it corresponded to the number of 
carrier bags required to fulfil the functional unit. According to the definition provided by the 
functional unit, this depended mainly on the volume of the bag and its weight holding capacity. 
Volume and weight holding capacity were considered only, since we observed a direct correla-
tion between thickness and weight holding capacity. The reference flow for each carrier bag 
type is provided below in Table 3. The average virgin LDPE plastic was taken as a reference.  
 
The reference flow for each bag subtype in Table 3 was calculated taking into consideration 
both volume and weight holding capacity as conditions that had to be fulfilled at the same time. 
This means that, for each carrier bag, if the volume and/or the weight holding capacity were 
lower than the ones specified in the functional unit, we assumed that the customers would 
need to buy two bags instead of one in order to comply for the same functionality (a grocery 
shopping of the volume of 22 litres and/or a weight of 12 kilograms). When a bag was required 
two times, it was modelled by multiplying by two the average weight and volume provided in 
Table 2. In the cases of biopolymer and paper carrier bags, the weight holding capacity sur-
veyed was in average compliant with the virgin LDPE carrier bag, but provided the highest 
variance between the samples. For example, the weight that these types of bags were capable 
of holding varied greatly in the tested samples, especially if the items placed in the bags for 
the survey had sharp angles, which tore the bags much more easily than for other carrier bag 
types (Alonso Altonaga, 2017). For these reasons, the weight holding capacity for the refer-
ence flow was considered not respected, and that two bags would be required to carry the 
same weight. The reference flow for each carrier bag also differed for the material composition 
used for the LCA modelling. Further details are provided in the Life Cycle Inventory (LCI; Ap-
pendix A).  
 
Table 3. Required reference flow for each carrier bag 
Reference flow 
Volume 
Weight holding capacity 
Material  Type 
(number of bags 
enough? 
enough? 
needed) 
Plastic 
LDPE 


1 (reference bag) 
Plastic 
LDPE simple 
No 
No 

Plastic 
LDPE rigid handle 
Yes 
Yes 

Plastic 
LDPE recycled 
No 
No 

Plastic 
LDPE recycled, simple 
No 
No 

Plastic 
LDPE recycled, rigid 
Yes 
Yes 

handle 
Plastic 
PP non-woven 
Yes 
Yes 

Plastic 
PP woven  
Yes 
Yes 

Plastic 
PET recycled 
Yes 
Yes 

Plastic 
Polyester 
Yes 
Yes 

Bio-
Biopolymer 
No 
No 

plastic 
Paper 
Paper 
Yes 
No 

Textile 
Cotton organic 
No 
Yes 

Textile 
Cotton conventional 
Yes 
Yes 

Compo- Jute, PP, cotton 
Yes 
Yes 

site 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   33 

 
3.3 
System boundaries 
The time horizon of the impacts in this LCA was 100 years. The geographical scope was Eu-
rope. The temporal scope was 2017. The LCA was a “cradle-to-grave” LCA, meaning that for 
each carrier bag were taken into account the environmental impacts of all its life-cycle stages, 
from production of the carrier bag material, manufacturing of the carrier bag and distribution, to 
use and end-of-life.  
 
The system boundaries included production of energy and material resources required for the 
production of the carrier bags, as well as production of the packaging used for the distribution 
of the bags. These required resources were production of electricity and heat, production of 
the main carrier bag material (such as LDPE) and ancillary materials (such as ink, glue). In 
accordance with the project partners, the production of the carrier bags and the packaging for 
distribution was set to occur in Europe. Production of the carrier bag material and other ancil-
lary materials could occur anywhere in the world, as the materials were assumed to be re-
trieved from the market. The carrier bags were assumed to be distributed to Danish supermar-
kets by road transportation and using cardboard packaging. Production of transportation fuel 
was included in the assessment. 
 
The assessment assumed zero emissions arising from the use phase. The LCA included the 
production of energy and material resources required to collect, treat and manage the carrier 
bag once it was collected by the Danish waste management system. In particular, the as-
sessment took into account direct emissions occurring to air, water and soil during the waste 
management phase, as well as avoided processes (i.e. avoided production of primary materi-
als and energy substituted by the residues). The waste management processes were set to 
occur partly in Denmark (collection, transport and incineration) and partly in other European 
countries (transport, recycling and final disposal of rejects). 
 
Capital goods, as the construction of facilities and production of machineries and transporta-
tion were not included. In accordance with the project partners, the system boundaries do not 
include small very lightweight plastic carrier bags and other types of carriers, such as personal 
bags or bags provided by other retailers. The report does not consider behavioural changes or 
consequences of introducing further economic measures. The study does not take into ac-
count economic consequences for retailers and carrier bag producers. The environmental 
assessment does not take into account the effects of littering.  
 
3.4 
Modelling approach and allocation of multi-functionality 
The LCA involved consequences that resulted in additionally installed (or additionally decom-
missioned) equipment/capacity outside the boundary of the foreground systems. The model-
ling approach used was consequential LCA. Multi-functionality in the model was addressed by 
system expansion. This means that co-products generated along with the main service provid-
ed by the scenarios, i.e. treatment of the residues, were assumed to displace those products 
in the market that were likely to react to changes in demand/supply induced by the investigat-
ed scenarios. These technologies were referred to as “marginal technologies” and are dis-
cussed in detail in Appendix B. Examples are the energy produced from the incineration of the 
waste, and recovered material from the recycling processes. 
 
The marginal energy technologies were chosen with the project partners and are described in 
detail in Appendix B. The energy marginal technologies have a future outlook and were de-
fined for the period 2020 – 2030. Since the study is going to support decisions that will occur in 
a 10 year period, using a future marginal energy was assumed to represent the effects of such 
choices in the future waste management system. 
34   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
3.5 
Modelling of primary reuse 
Each of the carrier bags can be reused multiple times. When the carrier bag for grocery shop-
ping is used again to provide the same function, this is called primary reuse (reuse for the 
same function for which the product is produced).  
 
Primary reuse has been modelled as illustrated in Figure 10. We assumed that reuse X times 
of a carrier bag allowed avoiding the corresponding use X times of another carrier bag. This 
means that the avoided use of another carrier bag avoids the environmental life cycle impact 
associated with its production and disposal. Disposal is indicated below generically as “EOL” 
(end-of-life). The three end-of-life options taken into account for this study are described in 
Section 4. 
 
This configuration allows calculating the number of times a type of carrier bag would need to 
be reused in order to provide a better environmental performance the carrier bag taken as 
reference, which was LDPE. Considering the cradle-to-grave LCA result for the carrier bag A 
as LCIAA and the cradle-to-grave LCA result for the reference LDPE carrier bag as LCIALDPE
the number of reuse times x is calculated as follows: 
 
LCIA  xLCIA
 LCIA
A
LDPE
LDPE  
 
 
 (Eq. 1) 
LCIA  LCIA
A
LDPE

 
 
 
 
 (Eq. 2) 
LCIALDPE
The number of times depends on the difference between the two LCIA results, based on the 
LCIA result set as reference. 
 
The results for these calculations were provided for this report as a matrix, which represents in 
the rows the alternative carrier bags, and in the column the carrier bag taken as reference. 
The numbers in the cells provide the number of times an alternative carrier bag needs to be 
reused in order to provide a better alternative than the carrier bag used as reference in the 
column (Figure 11). 
 
The avoided bag can in practice also be reused, and if this was the case then the reuse num-
ber X would proportionally be as many times higher as it was reused. The resulting reuse 
numbers calculated with equation 2 should therefore be seen as a minimum reuse number 
that could be higher.  
 
Edwards and Fry (2011) performed a similar assessment, but calculating the number of reuse 
times simply performing a ratio between the carrier bag alternative and the reference carrier 
bag. Such calculation differs from the method adopted for the present study by providing the 
number of reuse times, instead of the number of times the bag is used in total (Eq. 2). 
 
3.6 
Modelling of secondary reuse 
Secondary reuse, i.e. reuse to provide for a function different than the one for which the prod-
uct was produced, was assumed as substituting a waste bin bag (production and disposal). 
The function of the substituted waste bin bag is to hold waste with an average volume of 22.4 
litres before being incinerated. The substituted waste bin bag was assumed to be an LDPE 
waste bin bag; the average volume was obtained after a survey of three different types of 
LDPE waste bin bags purchasable in Danish supermarkets in 2017.  
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   35 

 
Reuse X 
Production of 
Carrier bag 
times
carrier bag
A
EOL
(Primary 
A
(Primary use)
reuse)
Avoidance times
Production of 
Carrier bag 
carrier bag 
LDPE
EOL
LDPE
(Primary use)
 
 
Figure 10. Generic modelling for the primary reuse. The example portrays the primary 
reuse X times of a generic “carrier bag A”. The reuse X times allows avoiding X times 
the production, use and disposal of the reference LDPE carrier bag.  

 
 
X: number of times a carrier bag type 
 
LDPE carrier bag , EOL1 
in the rows needs to be reused in 
Carrier bag A, EOL1  X times 
order to provide the environmental 
Carrier bag C, EOL1  X times 
performance of the carrier bag type 
in the column 
Carrier bag D, EOL1  X times 
Figure 11. Example of the result table that will illustrate the calculated number of prima-
ry reuse times. For each carrier bag alternative in the rows, the cells provide the num-
ber of times the carrier bag alternative needs to be reused in order to provide the envi-
ronmental performance of the reference carrier bag in the column, for a defined impact 
category. 

 
The conceptual model for secondary reuse is illustrated in Figure 12. A carrier bag produced 
and purchased for grocery shopping is reused one time in order to hold waste as a waste bin 
bag before being collected with residual waste and sent to incineration. The number of avoid-
ed waste bin bags (Y) was assumed to depend on the volume of the carrier bag. For example, 
carrier bags with a larger volume than an average LDPE waste bin bag were assumed to be 
able to contain more waste. The calculated avoided waste bin bags for each carrier bag type 
are provided in Table 4. 
 
It is noteworthy that PP, polyester, paper, cotton and composite bags cannot fully provide for 
the same function as an LDPE waste bin bag. This is due to the material characteristics of the 
bags, which are water permeable, while LDPE is not. Therefore, the secondary reuse of these 
carrier bags has to be taken into account with due discussion. Moreover, biopolymer carrier 
bags may have a lower holding capacity and lower resistance to puncturing and tearing, which 
should also be taken into account for the discussion of the results. 
 
 
36   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Reuse 1 time 
Production of 
Carrier bag 
as waste bag
EOL: 
carrier bag
A
(Secondary 
Incineration
A
(Primary use)
reuse)
Avoidance times
Production of 
Use of waste 
EOL: 
waste bin bag
bin bag
Incineration
 
Figure 12. Generic modelling for the secondary reuse. The example portrays the sec-
ondary avoided number Y of produced as disposed waste bin bags for the secondary 
reuse of one carrier bag A. 

 
Table 4. Number of avoided waste bin bags per carrier bag alternative. 
Volume 
Y: number of 
Reference flow 
Material 
Type 
available 
avoided waste bin 
(number of bags needed) 
(L) 
bags (fraction) 
Plastic 
LDPE 
1 (reference bag) 
22.4 
1.0 
Plastic 
LDPE simple 

38.4 
1.7 
Plastic 
LDPE rigid handle 

24.8 
1.1 
Plastic 
LDPE recycled 

43.3 
1.9 
Plastic 
LDPE recycled, simple 

30.0 
1.3 
Plastic 
LDPE recycled, rigid handle 

50.0 
2.2 
Plastic 
PP non-woven 

29.0 
1.3* 
Plastic 
PP woven  

36.7 
1.6* 
Plastic 
PET recycled 

42.0 
1.9* 
Plastic 
Polyester 

32.0 
1.4* 
Bioplastic  Biopolymer 

44.0 
2.0* 
Paper 
Paper 

46.0 
2.1* 
Textile 
Cotton organic 

40.0 
1.8* 
Textile 
Cotton conventional 

27.0 
1.2* 
Composite  Jute, PP, cotton 

32.0 
1.4* 
* The indicated carrier bag alternatives cannot fully provide for the LDPE waste bin bag functionality due to 
their water permeability; the biopolymer bag could be less resistant to tearing. 
3.7 
Modelling tools 
The study was carried out with the waste-LCA model EASETECH (Clavreul et al., 2014), 
which was developed at DTU Environment and used for this assessment. EASETECH allows 
modelling of the flow of material in the LCA as a mix of material fractions (e.g. plastic, paper, 
etc.) and tracking their physico-chemical properties (e.g. energy content, fossil carbon, etc.) 
throughout the modelled life-cycle steps. The tracking of the material composition on top of the 
conventional mass flow-based LCA allows consumption and production of resources to be 
based on the physico-chemical properties of the functional unit, and especially to express 
emissions occurring during the end-of-life phases as a function of its chemical composition 
(e.g. fossil carbon emitted during incineration). 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   37 

 
3.8 
LCIA methodology and types of impacts 
The impact categories for the impact assessment phase were selected among those recom-
mended by the European Commission (European Commission, 2010). Since the LCA study 
might ultimately be used to support decisions, we decided to provide a comprehensive set of 
indicators. Previous LCA studies on grocery carrier bags have focused only on climate 
change, especially for the calculation of primary reuse times. The selected impact categories 
were: climate change, ozone depletion, human toxicity cancer and non-cancer effects, photo-
chemical ozone formation, ionizing radiation, particulate matter, terrestrial acidification, terres-
trial eutrophication, freshwater eutrophication, ecosystem toxicity, resource depletion, fossil 
and abiotic. We also took into account depletion of water resource.  
 
Results are presented as characterized impacts following the characterization references in 
Table 5. Since characterization for the depletion of water resource is highly dependent on the 
geographical location, we decided to present inventory results as litres of water resource used. 
The LCIA results presented in this LCA study are relative and do not predict impacts on cate-
gory endpoints, nor threshold levels, safety margins or risk levels.  
 
3.9 
Data requirements 
In order to carry out this LCA study, inventory data on the emissions connected to the produc-
tion of primary materials and energy required for the production of the different carrier bag 
types were needed. Moreover, we required data on material and energy consumption for the 
manufacturing of the carrier bags, as well as material needed for packaging and distribution. 
Data on waste management technologies for the end-of-life of the carrier bags were also 
needed.  
 
The project did not focus on extensive data collection and was intended to be based on exist-
ing inventories for resources and data in the literature. For this reason, the study was mostly 
based on data available in the Ecoinvent database, version 3.4. Ecoinvent datasets were used 
for inventories for all materials and energy resources required for production, distribution, use 
and disposal. In order to be consistent with the modelling approach of the study, we used the 
consequential version of the database. Data on the material and energy resources required for 
the production of the carrier bags was obtained from a literature review of existing LCA studies 
on the environmental performance of supermarket carrier bags. Additional data on the material 
composition and on the waste management technologies were obtained from the library of the 
LCA model EASETECH. In general, EASETECH data and process models were used in order 
to model waste incineration when it was taking place in Denmark, as well as recycling in Eu-
rope. Management of rejects from recycling outside Denmark was modelled using generic 
waste management processes for Europe.  
 
Each X in Table 6 shows the data available from LCI databases, literature sources and EA-
SETECH at the beginning of this LCA study. Data for each scenario is further specified in 
Appendix A. 
 
3.9.1  Production and distribution 
Physico-chemical composition data for carrier bags products, which were needed for model-
ling incineration emissions, were obtained from the EASETECH library. The physico-chemical 
composition for the biopolymer bag was obtained by modifying EASETECH data according to 
physico-chemical characteristics of biopolymers from existing studies in the literature (Razza, 
2014). 
 
 
 
 
38   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 5. Characterization (midpoint) references utilized in the project. The impact cate-
gory “Depletion of abiotic resources” follows the ILCD recommended characterization 
factors. 

Reference 
Impact Category 
Acronyms 
LCIA method 
Units 
year 
ILCD2011, Climate change w/o LT; mid-
kg CO
Climate change 
CC 
2011 

point; GWP100; IPPC2007 
eq. 
ILCD2011, Ozone depletion w/o LT, ODP 
kg CFC-
Ozone depletion 
OD 
2011 
w/o LT 
11 eq. 
Human toxicity, 
HTc 
ILCD2011, Human toxicity, cancer ef-
2011 
CTUh 
cancer effects 
 
fects, w/o LT, USEtox 
Human toxicity, non-
ILCD2011, Human toxicity, non-cancer 
HTnc 
2011 
CTUh 
cancer effects 
effects w/o LT, USEtox 
Particulate mat-
ILCD2011, Particulate matter w/o LT, 
kg PM2.5 
ter/Respiratory inor-
PM 
2011 
from Humbert 2009, PM 
eq. 
ganics 
ILCD2011, Ionising radiation human 
Ionizing radiation, 
kBq U235 
IR 
health w/o LT, IRP100 w/o LT, ReCiPe 
2011 
human health 
eq. (to air) 
1.05 midpoint (H) 
Photochemical 
kg 
ILCD2011, Photochemical ozone for-
ozone formation, 
POF 
2011 
NMVOC 
mation, human health w/o LT, POCP 
human health 
eq. 
Terrestrial acidifica-
ILCD2011, Terrestrial acidification, Ac-
mol H+ 
TA 
2011 
tion 
cumulated Exceedance 
eq. 
Eutrophication ter-
ILCD2011, Eutrophication Terrestrial, 
TE 
2011 
mol N eq. 
restrial 
Accumulated Exceedance 
Eutrophication 
ILCD2011, Eutrophication Freshwater, 
FE 
2011 
kg P eq. 
freshwater 
FEP ReCiPe 1.05 midpoint (H) 
Eutrophication ma-
ILCD2011, Eutrophication Marine w/o LT, 
ME 
2011 
kg N eq. 
rine 
ReCiPe2008 1.05 
Ecotoxicity freshwa-
ILCD2011, Ecotoxicity freshwater w/o LT, 
ET 
2011 
CTUe 
ter 
USEtox 
Resources, deple-
CML 2001, Depletion of abiotic re-
tion of abiotic re-
RDfos 
2016 
MJ 
sources, fossil - updated 2016 
sources, fossil 
Resources, deple-
CML 2001, Depletion of abiotic re-
tion of abiotic re-
RD 
sources, elements (reserve base) - up-
2016 
kg Sb eq. 
sources (reserve 
dated 2016 
base) 
 
The manufacturing process of the carrier bag was set to occur in Europe. Inventories of emis-
sions related to the production of primary materials and energy required for the carrier bags 
manufacturing phase were retrieved from the Ecoinvent database (v3.4, consequential), with 
exception of recycled LDPE, PET polyester, organic cotton and composite. It was assumed 
that primary materials and energy were retrieved from the market, therefore Ecoinvent “mar-
ket” inventories were utilized when available. These inventories take into account production 
shares in different locations in the world. Market inventories were utilized also for the energy 
(electricity and heat) required for the manufacturing of the carrier bags, but with a European 
focus. Cotton bags are assumed to be manufactured in Europe, but the cotton used for the 
manufacturing is assumed to be retrieved from the market. The dataset used for cotton pro-
duction (Ecoinvent, version 3.4, consequential) is based on a global average based on inputs 
from China, India, Latin America, and Turkey. 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   39 

 
Data on the energy and material requirements (such as amount of electricity, ancillary materi-
als, and packaging) for most of the carrier bag manufacturing processes were available from 
literature. Specific data was missing for woven PP, PET, polyester, organic cotton and compo-
site carrier bags. Transportation data was available as far as fuel consumption is concerned, 
but data on kilometres driven was missing, since it was not possible to locate a precise geo-
graphical location for the production of the carrier bag.  
 
3.9.2  End-of-life 
On the other hand, as far as the end-of-life phase was concerned, extensive data and dedicat-
ed process models were available for incineration and recycling through the EASETECH data-
base. Incineration in Denmark was modelled with an input-specific process in EASETECH, 
which took into account also direct emissions occurring from the incineration of the material. 
Utilized and recovered electricity and heat were the marginal energy technologies described in 
detail in Appendix B. The management of residues from the incineration process was also 
taken into account and modelled. Recycling in European countries was modelled with EA-
SETECH and according to data available in the literature. Management of residues from the 
recycling process was modelled with Ecoinvent waste management processes for Europe. 
Ancillary materials required in the end-of-life processes were obtained from the Ecoinvent 
database, version 3.4, consequential. 
 
 
Table 6. Data completeness assessment. Inventory of the available data at the begin-
ning of the LCA study (without assumptions). X in the table represents available data. 
Please see Appendix A for details on data selected for the assessment and on the litera-
ture references used for the carrier bag manufacturing data. 

Carrier 
Physico-
Carrier bag 
bag 
chemical 
Material pro-
Transporta-
End-of-life: 
End-of-life: 
manufactur-
materi-
composi-
duction data 
tion data 
incineration 
recycling 
ing data 
al 
tion data 




Ecoinvent 3.4, 
EASETECH,  EASETECH, 
EASETECH 
LDPE 
consequen-

 
Ecoinvent 
Ecoinvent 
(Riber et al., 
tial, global 
3.4, conse-
3.4, conse-
2009) 
market 
quential 
quential 



EASETECH,  EASETECH, 
LDPE 
EASETECH 
 
 
 
Ecoinvent 
Ecoinvent 
recycled  (Riber et al., 
3.4, conse-
3.4, conse-
2009) 
quential 
quential 




Ecoinvent 3.4, 
EASETECH,  EASETECH, 
PP non-
EASETECH 
consequen-

 
Ecoinvent 
Ecoinvent 
woven 
(Riber et al., 
tial, global 
3.4, conse-
3.4, conse-
2009) 
market 
quential 
quential 




PP 
Ecoinvent 3.4, 
EASETECH,  EASETECH, 
EASETECH 
consequen-
 
 
Ecoinvent 
Ecoinvent 
woven 
(Riber et al., 
tial, global 
3.4, conse-
3.4, conse-
2009) 
market 
quential 
quential 




Ecoinvent 3.4, 
EASETECH,  EASETECH, 
PET 
EASETECH 
consequen-
 
 
Ecoinvent 
Ecoinvent 
recycled  (Riber et al., 
tial, global 
3.4, conse-
3.4, conse-
2009) 
market 
quential 
quential 
40   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 6 (continued). Data completeness assessment. Inventory of the available data at 
the beginning of the LCA study (without assumptions). X in the table represents availa-
ble data. Please see Appendix A for details on data selected for the assessment and on 
the literature references used for the carrier bag manufacturing data. 

Physico-
Material 
Carrier bag 
Carrier bag 
chemical 
Transporta-
End-of-life:  End-of-life: 
production 
manufactur-
material 
composi-
tion data 
incineration 
recycling 
data 
ing data 
tion data 


PET Poly-
EASETECH, 
EASETECH 
 
 
 
Ecoinvent 
 
ester 
(Riber et al., 
3.4, conse-
2009) 
quential 



EASETECH 
Ecoinvent 
EASETECH, 
Biopolymer 
(Razza, 
3.4, conse-

 
Ecoinvent 
Not recycled 
2014; Riber 
quential, 
3.4, conse-
et al., 2009)  global market 
quential 



EASETECH,  EASETECH, 
EASETECH 
Paper 
 

 
Ecoinvent 
Ecoinvent 
(Riber et al., 
3.4, conse-
3.4, conse-
2009) 
quential 
quential 


EASETECH, 
Cotton 
EASETECH 
 
 
 
Ecoinvent 
Not recycled 
organic 
(Riber et al., 
3.4, conse-
2009) 
quential 



Cotton 
Ecoinvent 
EASETECH, 
EASETECH 
conven-
3.4, conse-

 
Ecoinvent 
Not recycled 
tional 
(Riber et al., 
quential, 
3.4, conse-
2009) 
global market 
quential 


Composite 
EASETECH, 
EASETECH 
(jute, PP, 
 
 
 
Ecoinvent 
Not recycled 
cotton) 
(Riber et al., 
3.4, conse-
2009) 
quential 
 
3.10  Assumptions 
First of all, the present LCA study included in the assessment only the grocery carrier bag 
types identified in the carrier bags survey (Section 2), which are carrier bag types available in 
Danish supermarkets in 2017. Other carrier bags sold by other retailers, personal bags and 
very lightweight carrier bags were excluded from the assessment. 
 
In order to identify the functional unit and reference flow, we did not take into consideration 
customers’ behavioural patterns, such as tendency to buy new bags for each grocery shop-
ping. We did not take into account whether differences could occur in shopping occurring at 
different times of the week (weekdays versus weekends) or the size of the family unit. Effect of 
taxation on customers’ behaviour or choices of the supermarkets was not included. 
 
For biopolymer and textile bags, recycling was not considered (Table 6). For biopolymers they 
do not recycle with other polymers, and are actually detrimental to the recycling of other plas-
tics. In the report we did not include negative effects from consumers that mistakenly would 
place the biopolymer with the plastic recycling, therefore the result for biopolymer bags could 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   41 

 
be worse if this effect was included. In addition we did not include material recovery through 
composting for the compostable starch-biopolymer bags, since biopolymer bags are currently 
sorted out from organic waste management plants and sent for incineration. 
 
Recycling of textiles was not taken into account since it mainly occurs outside the Danish 
waste management system, for example via charity organizations or through return schemes 
at retailer shops. The extent of recovery of materials can be extremely variable according to 
the specific collection selected, and the quality of the material collected.  
 
3.10.1  Assumptions on missing data 
In order to provide for the missing data identified in the completeness assessment (Table 6), 
assumptions had to be made. The assumptions are reported in the following Table 7. First of 
all, the material fractions used for the material composition in EASETECH were not as many 
as the carrier bag types identified. We used the same material fraction for each of the three 
types of material: plastic, paper and textiles.  
 
Regarding the production of the primary materials required for the manufacturing of the carrier 
bags, it was not possible to retrieve “market” production processes from Ecoinvent for all the 
carrier bags materials assessed. Market inventories were not available for paper and for the 
LDPE selected for the modelling of the waste bin bag. For these materials, production da-
tasets for Europe were chosen instead. A specific dataset for PET polyester production was 
not available, so instead a market dataset for virgin PET was used. 
  
Moreover, Ecoinvent did not provide inventories for the production of recycled LDPE and or-
ganic cotton. For this reason, we assumed that recycled LDPE could be modelled, as a first 
assumption, utilizing the same dataset of virgin LDPE. For organic cotton, we modified the 
Ecoinvent dataset for conventional cotton production by subtracting environmental impacts 
connected to fertilizers and by lowering the production yield by 30 %. The yield of organic 
versus conventional cotton was found to range between 20 % and 40 % in the literature, 30 % 
according to a field test performed in India (Forster et al., 2013).  
 
In order to model the production of composite material, we took into account the production of 
each single material composing the composite bag, with an assumed percent share of 80% 
jute, 10% PP and 10% cotton.  
 
The available data on the manufacturing part of the carrier bags was lacking for the different 
PP (woven or non-woven), PET recycled, polyester PET, organic cotton and composite. We 
considered that the manufacturing materials and energy requirements were the same for wo-
ven and non-woven PP bags, as well as for PET and polyester PET. These types of carrier 
bags were found having very similar characteristics from the survey conducted on carrier 
bags. The same manufacturing data were used for the paper bleached and not bleached; 
similarly the same production data was used for cotton conventional, organic and composite 
bags (according to weight and materials used). We assumed that the packaging for shipping of 
the bags was single-wall corrugated cardboard box for all carrier bag types, as found from the 
conducted literature review. 
 
We could not find literature data on the production and manufacturing of the waste bin bag. 
The waste bin bags surveyed for this study were thinner and of a visibly lower quality com-
pared to the LDPE carrier bags. Due to the characteristics of the LDPE waste bin bags sur-
veyed, we assumed that the production of such bag was less demanding in terms of energy 
and materials. For this reason, we decided to use the Ecoinvent dataset for the production of 
LDPE packaging, which included extrusion of LDPE and ancillary materials consumption. The 
Ecoinvent process chosen for waste bin bags production presented slightly lower overall im-
pacts compared to the one for the production of LDPE carrier bag.  
42   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
The EASETECH process models for recycling were based on literature data for recycling of 
plastic originating from virgin polymers, but not for recycled polymers. Therefore, we assumed 
that the efficiency was the same based on material type (for example, the same efficiency for 
all LDPE types).  
 
As far as the environmental assessment is concerned, the LCA included the potential envi-
ronmental impacts arising from the material and energy requirements for the production, use 
and treatment of the carrier bag, as well as the direct emissions during treatment. The LCA did 
not take into consideration the environmental effects of littering, nor the environmental impacts 
associated with the construction or decommissioning of infrastructures. Biomass was not con-
sidered a limited resource.  
 
Table 7. Data assumptions with respect to carrier bag type and location in the model-
ling. X indicates where data was already present and did not require assumptions. 

Physcio-
Carrier bag 
Carrier bag 
chemical 
Material pro-
Transportation  End-of-life:  End-of-life: 
manufactur-
material 
composition 
duction data 
distance 
incineration 
recycling 
ing data 
data 
LDPE 
Soft plastic 


Assumed 


Same as LDPE 
LDPE recy-
Ecoinvent 3.4, 
Same as 
Same as 
Soft plastic 
Assumed 

cled 
consequential, 
LDPE 
LDPE 
global market 
PP non-
Soft plastic 


Assumed 


woven 
Same as PP 
PP woven 
Soft plastic 

Assumed 


non-woven 
PET recy-
Same as 
Soft plastic 

Assumed 


cled 
LDPE 
Virgin PET 
Ecoinvent 3.4, 
Same as PP 
Same as 
Polyester 
Soft plastic 
Assumed 

consequential, 
non-woven 
PET 
global market 
Soft plastic, 
Biopolymer 


Assumed 

Not recycled 
modified 

Paper and 
Ecoinvent 3.4, 
Paper 
consequential, 

Assumed 


carton 
production in 
Europe 
Modified from 
Same as 
Cotton or-
Textiles 
cotton conven-
cotton con-
Assumed 

Not recycled 
ganic 
tional 
ventional 
Cotton con-
Textiles 


Assumed 

Not recycled 
ventional 
Ecoinvent 3.4, 
Composite 
consequential, 
Same as 
(jute, PP, 
Textiles 
global market, 
cotton con-
Assumed 

Not recycled 
cotton) 
share between 
ventional 
materials 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   43 

 
3.11  Data quality assessment 
The information regarding volume, weight holding capacity and weight of the carrier bags was 
retrieved by a survey for all carrier bags available for purchase in Danish supermarkets in 
2017 and is considered reliable and current. 
 
Considering the same material composition for some carrier bags assessed in this study 
means that in the LCA results emissions from incineration of each material type are driven by 
mass rather than by different chemical composition of the bags. This will affect results mainly 
for the fossil carbon content of the material, which is emitted to air through incineration. 
 
Regarding the datasets retrieved from the Ecoinvent database, the consequential version of 
the database is considered consistent with the goal and scope of this LCA study. The version 
of the database employed for this LCA was the latest available (3.4). All datasets used for this 
study have been tested for their environmental impacts against other datasets for similar mate-
rials and energy before being selected and implemented in the modelling. For example, we 
downloaded all available datasets for LDPE (market, production in various geographical loca-
tions) and verified that the dataset chosen for the modelling presented overall values in line 
with other similar datasets. In general, market and global datasets provided slightly higher 
emissions than production datasets in specific geographical locations. Therefore, the carrier 
bags for which only production datasets were available are likely to have slightly lower emis-
sions than using market datasets. Assuming that the carrier bag manufacturers retrieve mate-
rials and energy from the market, our preference was always for the market datasets. When 
not available, we used production datasets, preferably for Europe. 
 
Specific manufacturing data for recycled LDPE, woven PP, recycled PET, polyester, bleached 
paper, organic cotton and textile carrier bags were missing and available data from the most 
similar carrier bags manufacturing process was assumed instead. These assumptions are not 
considered limiting for the results since past LCAs on grocery carrier bags have evidenced 
that most of the production impacts were ascribable to the production of the carrier bag mate-
rial (Edwards and Fry, 2011; Kimmel and Cooksey, 2014).  
 
The data utilized to model material and energy requirements during the manufacturing pro-
cesses were retrieved from a series of well-documented LCA studies. For our references, we 
gave priority to reviewed LCA studies and LCAs carried out by institutional bodies and with a 
similar geographical scope (Europe). The manufacturing data was obtained as a range from 
the values found in the literature, as reported in detail in Appendix A. When manufacturing 
data for specific carrier bags were missing, as in the case of PET and PP bags, we utilized 
data of peer-reviewed LCA studies for bags with similar characteristics. 
 
The assumption of modelling the waste bin bag as an LDPE with lower quality was considered 
in line with the intended use of the bag: the LDPE carrier bags are intended for multiple uses, 
while the waste bin bag is intended for single use. Moreover, selecting a process with slightly 
lower impacts for the production of the waste bin bag allows being more conservative regard-
ing the results, since lower benefits will arise from the saving of a waste bin bag. 
 
The assumed transportation distances, which were the same for all the assessed carrier bags, 
reflect that transportation could occur to be as far as southern Europe. This was considered 
conservative, since the exact locations of the recycling plants were not known. 
 
Data for end-of-life is considered technologically reliable. EASETECH allows modelling waste 
management as input-specific and allows following the material flow. Values characterizing the 
end-of-life processes are based on peer-reviewed literature and are extensively reported in 
Appendix A. Regarding the missing data for the recycling of recycled polymer, the recovery 
efficiencies could be lower if the quality of the polymer sent to recycling was lower, but we did 
44   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
not have data to substantiate assumptions on lower recovery rates and higher residues pro-
duction for recycled polymers. 
 
3.11.1  Critical assumptions 
Overall, the present LCA study involved a series of assumptions. The following assumptions 
were considered critical for the outcomes of the study: 
  The reference flow was calculated assuming that two bags were required when one carrier 
bag could not provide for the same volume and weight holding capacity of an average LDPE 
carrier bag, which was taken as reference. The study assumes that the customers of Danish 
supermarkets would need to buy another bag of the same type in order to provide for the 
same functionality (rounding). For some carrier bags this assumption could result in a large 
overcapacity. 
  The recycled LDPE carrier bag was modelled using the same production dataset of virgin 
LDPE. This modelling choice, due to unavailability of data, is considered to be conservative. 
Recycled LDPE is expected to provide lower environmental impacts than virgin LDPE, as it 
can be observed for recycled HDPE and recycled PET in comparison with virgin HDPE and 
virgin PET (please see Appendix B). 
  The yield of organic cotton farming was assumed 30 % lower than conventional cotton. For 
the modelling, this implies that 30 % more impacts are considered for the production of or-
ganic cotton than conventional cotton. The yield was found to vary in the literature between 
20 % and 40 % and according to the geographical location (Forster et al., 2013). Since the 
Ecoinvent dataset for cotton production is not linked to a specific geographical location, but 
is based on a global average, 30 % was considered as average value. The selected value 
influences the contribution of the production process to the overall impacts related to the or-
ganic cotton carrier bag. 
  Although the functional unit is based on carrier bags available for purchase in Danish su-
permarkets in 2017, the study is assumed to support decisions that will occur in a 10 year 
period, using a future marginal energy is assumed to well represent the effects in the future 
waste management system. Using a non-future marginal energy would have entailed having 
coal in the energy mix, and would have provided higher savings from energy recovery in the 
incineration process. 
  Recycling was not considered for biopolymer and textile bags. Considering recycling feasi-
ble would mean allowing for the recovery of these materials through separate collection and 
re-processing, therefore lowering the impacts connected to the production of the carrier 
bags.  
  Reuse as waste bin bag was modelled for all carrier bags included in the study, even if 
some carrier bags may not be able to provide for the same functionality of an LDPE waste 
bin bag. 
 
Some of these critical assumptions were considered for sensitivity analysis, as explained in 
the Life Cycle Interpretation Section. 
 
3.12  Cut-offs 
As presented in the scope Section, the assessment did not include construction and decom-
missioning of infrastructure, buildings, machinery (capital goods), or analyses of existing ca-
pacities/new capacities requirements.  
 
3.13  Limitations 
The assumptions and cut-offs listed above were not considered limiting for the results of the 
assessment. First of all, the choice of the functional unit and reference flow was intentional for 
the calculation of the number of primary reuse times, regardless of the consumers’ behavioural 
patterns. Nevertheless, a different reference flow will be taken into consideration for a sensi-
tivity analysis of the results.  
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   45 

 
The choice of limiting the scope of the LCA to grocery carrier bags and not to personal bags 
and bags sold from other retailers was necessary in order to provide a specific assessment of 
the carrier bags available for purchase in Danish supermarkets, and to provide specific guid-
ance to retailers on the choice of the carrier bags based on their environmental performance. 
The choice of using the same material fractions for plastic bags, paper bags and textile bags 
will influence only the impacts that are modelled in EASETECH as a function of the material 
composition. In the case of the scenarios modelled in this assessment, the choice of material 
fractions will influence the emissions to atmosphere during incineration. Therefore, identifying 
the fossil and non-fossil carbon content and the content of metals emitted to air of the material 
fractions can cover the input-dependent part of the results. 
 
Finally, littering effects were considered negligible for Denmark. Littering was mentioned in 
Environment Australia (2002) as an effect of wind blowing on landfills and as a result of 
missed environmental education.  
 
3.14  Life Cycle Interpretation 
The Life Cycle Interpretation part of this study comprises the analysis of the results, which are 
provided both as characterized and normalized impacts, and the discussion of such results. 
The analysis of the results was carried out with respect to the three main aims stated in the 
goal of the study: (1) identification of the best disposal option for each type of bag, (2) identifi-
cation of the carrier bag with the best environmental performance, and (3) identification of the 
required number of primary reuse times based on the environmental assessment. The com-
parison of results was carried out per impact category and without employing any weighting.  
 
1.  Identification of the best disposal option for each type of bag 
For each type of carrier bag and impact category at a time, we examined the character-
ized results for each of the end-of-life scenarios. The LCIA for each bag was assessed 
with a contribution analysis, which identified the parts of the LCA model contributing the 
most to the final results. We also provided a dedicated contribution analysis to the carrier 
bag manufacturing part. This part of the interpretation of the results provided indication of 
the most preferable disposal option for each carrier bag type based on the results of the 
environmental assessment. 
 
2.  Identification of the carrier bag with the best environmental performance 
For each impact category, we identified the carrier bag alternative and the end-of-life sce-
nario that provides the best environmental performance, as well as whether the identified 
environmental performance was significantly better than the one provided by the other 
carrier bag alternatives. The optimal end-of-life scenario identified in (1) was taken into 
account for the discussion of the results. 
 
3.  Identification of the number of primary reuse times 
As explained in the Section on modelling of primary reuse, we provided the calculated 
number of primary reuse times required by a carrier bag alternative to provide a better en-
vironmental performance than a reference carrier bag. The number of reuse times was 
calculated for each impact category and differences were discussed. 
 
The results were discussed with respect to the goal and scope of the study, as well with re-
spect to the limitations and considerations about data quality. 
 
The discussion of the results was supported by additional calculations carried out as scenario 
analysis. A scenario analysis is a sensitivity analysis that takes into account the variation in the 
final result that occurs with differences in the initial assumptions taken. In particular, the varia-
tion in the results obtained was observed with respect to:  
46   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
  different reference flow: not rounded to two bags but based on fractions that fulfil the weight 
and volume criteria; 
  secondary reuse allowed for all carrier bag types versus only carrier bags that can fully pro-
vide for the waste bin bag functionality; 
  25 % lower impacts associated to virgin LDPE production. 
 
3.15  Critical review 
This LCA study includes a critical review, carried out by Line Geest Jakobsen and Trine Lund 
Neidel from COWI A/S in January 2018. The aim of the critical review is to assess the compli-
ance of the LCA study with the ISO standard and to increase the clarity and usefulness of the 
result.  
 
Although this LCA might be used to support decisions and that the comparative assertion 
might ultimately be disclosed to the public, there are pre-defined limitations to the study re-
garding the fact that the critical review was not conducted while the project was being carried 
out and by a panel of interested parties. For this reason, the report does not fully comply with 
the ISO standard. The critical review is provided in Appendix D and the main outcomes are 
summarized in the Executive Summary. 
 
3.16  Format of the report 
The format of the report is: 
 
  Short executive summary in Danish (8 pages); 
  Short executive summary in English (7 pages); 
  Technical LCA report. 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   47 

 
 
4.  Scenarios 
The following Section presents the scenarios that have been assessed by this LCA study. First 
of all, we selected a number of alternatives from the carrier bags identified from the survey. 
Then, scenarios were obtained by associating each carrier bag alternative with three different 
end-of-life scenarios. The scenarios are described referring to their main technological fea-
tures. However, as anticipated in the scope section, the system boundaries also include up-
stream processes and emissions to air, water and soil related to material and energy require-
ments for the presented technologies, as well as substituted energy and products. A detailed 
description of the material and energy processes used in the present study is provided in the 
LCI (Appendix A). 
 
4.1 
Carrier bag alternatives 
The selected carrier bag alternatives are provided in Table 8. The virgin LDPE type was se-
lected as reference, since it represents the carrier bag that can always be found for purchase 
at the cash register in all Danish supermarkets. This carrier bag alternative has been named 
“LDPEavg” scenario and it constitutes an average between simple and rigid handle LDPE 
carrier bags. Scenarios “LDPEs” and “LDPEh”, on the average simple and rigid handle LDPE 
carrier bags, respectively, were considered as well. The rigid handle carrier bag requires more 
material for its production, but has larger volume and might result in a different environmental 
performance when compared in terms of the functional unit. “LDPErec” was considered for 
recycled LDPE in general, since the survey could only find three items for this bag and since 
the simple and rigid handle model both do not show any difference with respect to the func-
tional unit considered.  
 
Table 8. Required reference flow for each carrier bag 
Reference flow 
Scenario name 
Material 
Type 
(number of bags needed) 
LDPEavg 
Plastic 
LDPE 
1 (reference bag) 
LDPEs 
Plastic 
LDPE simple 

LDPEh 
Plastic 
LDPE rigid handle 

LDPErec 
Plastic 
LDPE recycled 


Plastic 
LDPE recycled, simple 


Plastic 
LDPE recycled, rigid handle 

PP 
Plastic 
PP non-woven 

PPwov 
Plastic 
PP woven  

PETrec 
Plastic 
PET recycled 

PETpol 
Plastic 
Polyester 

BP 
Bioplastic 
Biopolymer 

PAP 
Paper 
Paper, unbleached 

PAPb 
Paper 
Paper, bleached 

COTorg 
Textile 
Cotton organic 

COT 
Textile 
Cotton conventional 

COM 
Composite 
Jute, PP, cotton 


Plastic 
LDPE 

 
 
48   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Scenarios “PP” and “PPwov” consider non-woven and woven PP, respectively. “PETrec” rep-
resents recycled PET carrier bags, while “PETpol” refers to PET polyester. The “BP” scenario 
models a biopolymer bag, which was assumed to be starch-complexed biopolymer (i.e. a so-
called compostable bag, as explained in Section 2). For the paper carrier bag, an additional 
scenario was added to the carrier bag “PAP”: we introduced the scenario, “PAPb”, in order to 
include also the effect of utilizing bleached paper instead of unbleached paper. 
 
“COTorg” and “COT” scenarios model organic and conventional cotton, respectively. The 
difference between the two scenarios lies in the fact that organic cotton will require less ferti-
lizers to be produced, but will also have a lower yield. It was estimated that the yield was 30 % 
lower, as previously seen in Section 3. “COM” scenario models the composite bag case, 
where the carrier bag is made of a mix of materials: jute, PP, and cotton. 
  
Production of 
End-of-life 
packaging 
Col ection
Transport
packaging
material
Production of 
Manufacture 
carrier bag 
Transport
Use
of carrier bag
material
End-of-life 
Treatment 
carrier bag 
Col ection
residues
(EOL1/EOL2/
EOL3)
PRO – Production of material and manufacturing of bag, treatment of residues
DIS – Distribution: packaging production and transportation of carrier bag to supermarkets
USE – Use of carrier bag
DIS EOL – Treatment of packaging residues
EOL – End-of-life of carrier bag
 
Figure 13. General common structure for all carrier bag scenarios assessed in this LCA 
study. The colour scales assigned to the different parts of the cradle to grave model will 
be used also for the contribution analysis. 

After being used by the customer, the carrier bag had three different end-of-life options (end-
of-life, orange): ending up in the residual waste collection and being incinerated (EOL1); being 
separately collected within similar materials waste stream and sent to recycling (EOL2); or 
being reused as a waste bin bag one time before ending up in the residual waste stream and 
being incinerated (EOL3). The following Sections illustrate the different end-of-life options. 
 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   49 

 
4.2 
End-of-life scenarios 
This Section introduces the three main end-of-life scenarios considered for this project and 
indicates which carrier bags are associated with which end-of-life scenarios.  
 
4.2.1  Incineration: EOL1 
The carrier bag is produced and provided in Danish supermarkets. Here it is purchased and 
used for its primary function, which is carrying grocery shopping from the supermarkets to 
homes (primary use). After being used, the carrier bag is disposed in the residual waste, col-
lected and ultimately incinerated in Denmark. The electricity and heat produced during the 
incineration process allows for avoiding the production of the same amount of electricity and 
heat from other resources. This scenario will be further referred to as “EOL1”. The main fea-
tures of the EOL scenario are provided in Figure 14 below. The colour scale is the same as 
Figure 13. Details are provided in Appendix A. 
 
Residual 
Production of 
Carrier bag
Electricity and 
Collection
waste 
electricity and 
(Primary use)
heat
incineration
heat
 
Figure 14. General EOL1 scenario structure. Dashed lines indicate substituted energy. 
 
4.2.2  Recycling of material: EOL2 
After being used for its primary function, the carrier bag is disposed with separately collected 
waste material of the same type. The separately collected waste is sorted and sent to material 
recycling, which is assumed to occur in Europe, but not in Denmark. The recycled secondary 
material allows avoiding the production of the same amount of material from primary re-
sources. The residues from the recycling process are incinerated, allowing for the production 
of electricity and heat, which substitute the production of the same amount of electricity and 
heat from other resources. This scenario will be further referred to as “EOL2”. The main fea-
tures of the scenario are provided in Figure 15. The colour scale is the same as Figure 13. 
Details are provided in Appendix A. 
 
Primary 
Secondary 
Carrier bag
Col ection 
Recycling 
material 
material for 
(Primary use)
and transport
(EU)
production for 
market
market
Residues 
Production of 
Electricity and 
incineration 
electricity and 
heat
(EU)
heat
 
Figure 15. General EOL2 scenario structure. 
 
 
50   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
4.2.3  Reuse as waste bin bag: EOL3 
The carrier bag is produced and provided in Danish supermarkets. Here it is purchased and 
used for its primary function, which is carrying grocery shopping from the supermarkets to 
homes (primary use). After being used, the carrier bag is reused for another function, which is 
collecting residual waste (secondary reuse). The carrier bag used as a waste bin bag allows 
avoiding the production and disposal of a traditional waste bin bag. In both cases, the electrici-
ty and heat produced during the incineration process allow for avoiding the production of the 
same amount of electricity and heat from other resources. This scenario will be further referred 
to as “EOL3”. The main features of the scenario are provided in Figure 16. The colour scale is 
the same as Figure 13. Details are provided in Appendix A. 
 
Waste bin 
Residual 
Production of 
Carrier bag
bag 
Electricity and 
Col ection
waste 
electricity and 
(Primary use)
(secondary 
heat
incineration
heat
reuse)
Residual 
Production of 
Production of 
Waste bin 
Electricity and 
Col ection
waste 
electricity and 
waste bin bag
bag
heat
incineration
heat
 
Figure 16. General EOL3 scenario structure. 
Table 9 indicates which carrier bags alternatives are associated with which end-of-life scenar-
io. EOL1 occurs for all carrier bag options, while recycling was not supposed to occur for bi-
opolymer, cotton and composite bags. Recycling of polyester could only be assumed.  
 
Table 9. Disposal options considered for each type of carrier bag included in the LCA 
study. X in the Table indicates where an end-of-life scenario in the column is consid-
ered viable and modelled for the corresponding carrier bag alternative in the row. * 
indicates functionality not fully provided. 

Carrier bag alternative 
EOL1 
EOL2 
EOL3 
LDPEavg 



LDPEs 



LDPEh 



LDPErec 



PP 


X* 
PPwov 


X* 
PETrec 


X* 
PETpol 


X* 
BP 

 
X* 
PAP 


X* 
PAPb 


X* 
COTorg 

 
X* 
COT 

 
X* 
COM 

 
X* 


 
 
 
As introduced in the previous section, recycling of biopolymer and textiles was not considered 
feasible in this study. The exclusion of recycling for textiles and biopolymers means that carrier 
bags of these materials will only be tested for EOL1 and EOL3. 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   51 

 
The secondary reuse as a waste bin bag was modelled for all carrier bag options. However, as 
previously explained in Section 3, the functionality of an LDPE waste bin bag cannot be fully 
provided by bags that are permeable to water, such as PP, polyester, paper, cotton and com-
posite. Moreover, biopolymer bags may present a higher chance of puncturing and tearing. 
EOL3 for these carrier bag types was calculated and then further discussed in the discussion 
section. 
 
4.3 
Carrier bag scenarios 
For all carrier bag scenarios, the manufacturing stage was assumed to occur in Europe. The 
produced carrier bags were distributed with single-wall corrugated cardboard packaging, and 
transported from their place of production in Europe to Denmark, where they were put into use 
in supermarkets. The packaging was assumed to be separately collected with cardboard 
packaging, and to be transported abroad (Europe) for recycling. The carrier bag alternatives 
were tested for the end-of-life scenarios as shown in Table 9. For EOL1 and EOL3, residual 
waste was collected and incinerated in Denmark. For EOL2, the carrier bags were separately 
collected and sorted (30 % sorted out as residues) in Denmark, then transported and recycled 
in Europe. 
 
4.3.1  LDPE carrier bags: LDPEavg, LDPEs, LDPEh, LDPErec 
LDPE carrier bags include virgin LDPE carrier bags (LDPEavg, LDPEs, LDPEh), and recycled 
LDPE carrier bags (LDPErec). The bags were associated with the same material composition 
(soft plastic, Riber et al., 2009) and to the same manufacturing data; the scenarios differed for 
the weight associated with each bag and the number of bags required to fulfil the function 
expressed in the functional unit. The scenarios included the production of LDPE required for 
the manufacturing of the bag, as well as ancillary materials and energy. The manufacturing of 
the carrier bag produced around 5 % residues of LDPE from the initially required mass, which 
were assumed to be incinerated. Recycling of LDPE in EOL2 (9.7 % residues) was assumed 
to substitute LDPE production as granulate in Europe with a market response of 90 %. Resi-
dues were assumed to be incinerated in Europe. 
 
4.3.2  PP carrier bags: PP, PPwov 
PP carrier bags include non-woven (PP) and woven (PPwov) carrier bags. The bags were 
associated with the same material composition (soft plastic, Riber et al., 2009) and to the 
same manufacturing data; the scenarios differed for the weight associated with the carrier 
bags. The scenarios included the production of PP required to manufacture the bags, as well 
as energy and material requirements. 5 % of PP was assumed to be lost during production 
and to be incinerated. Recycling of PP in EOL2 (9.7 % residues) was assumed to substitute 
PP production as granulate in Europe with a market response of 90 %. Residues were as-
sumed to be incinerated in Europe. 
 
4.3.3  Recycled PET carrier bags: PETrec 
Recycled PET carrier bags were associated with the material composition of soft plastic (Riber 
et al., 2009) and to the manufacturing consumption data of PP bags, due to the similarity in 
shape and structure. The scenario included the production of recycled PET. During manufac-
turing, 5 % of material was assumed to be lost as residues, which were incinerated. The recy-
cling process in EOL2 (24.5 % residues) was assumed to produce recycled PET and to substi-
tute recycled PET granulate, amorphous, in Europe with a market response of 81 %. Residues 
were assumed to be incinerated in Europe. 
 
4.3.4  Polyester carrier bags: PETpol 
Polyester carrier bags were also assumed representable by the material fraction soft plastic 
(Riber et al., 2009). The scenario included production of PET polyester, which was assumed 
ascribable to that of virgin PET. Due to the characteristics of the bag observed in the survey, 
energy and materials needed for manufacturing were assumed the same as PP carrier bags. 
52   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
The manufacturing process was assumed to produce 5 % residues, which were incinerated. 
The recycling process in EOL2 was assumed to be similar to that of PET, with 24.5 % residues 
produced and with a market response for recycled polyester of 81 %. Residues were assumed 
to be incinerated in Europe. 
 
4.3.5  Starch-complexed biopolymer bags: BP 
The material composition for starch-complexed biopolymer bags was obtained from Razza, 
(2014). The scenario included production of the biopolymer and manufacturing of the carrier 
bag. The Ecoinvent dataset for the production of starch-complexed biopolymer does not take 
into account carbon storage. Residues (1 %) were assumed to be incinerated. The recycling 
scenario was not considered for this type of carrier bags, and should be avoided as it can be 
detrimental to recycling of other plastic types. 
 
4.3.6  Paper bags: PAP, PAPb 
Paper carrier bags comprise unbleached (PAP) and bleached (PAPb) craft paper bags. Both 
scenarios were associated with the material composition of paper and carton containers (Riber 
et al., 2009) and to the same energy and material requirements for manufacturing. The sce-
narios differed for the material production process associated with unbleached and bleached 
craft paper. Production was assumed to produce 5 % residues, which were incinerated. Recy-
cling in EOL2 (9 % residues) was assumed to produce craft liner for cardboard production, 
with a market substitution in Europe of 90 %. Residues were assumed to be incinerated. 
 
4.3.7  Cotton bags: COTorg, COT 
Cotton bags comprise organic (COTorg) and conventional (COT) cotton. Both carrier bag 
types were modelled as textiles materials (Riber et al., 2009). The scenarios differed for the 
weight associated with the carrier bag, the number of bags required to fulfil the functional unit 
and for the cotton production data. Organic cotton production was modelled by subtracting 
fertilizers production data from conventional cotton production data and by lowering the yield 
by 30 %. Residues from production (1 %) were assumed to be landfilled. The recycling scenar-
io was not considered for this type of carrier bag. If the bags were recycled it would lower the 
impact of using the cotton bags. It would though be important what material the cotton would 
substitute for the overall performance.  
 
4.3.8  Composite bags: COM 
The carrier bag composed of jute, PP and cotton was associated with the material fraction 
textiles (Riber et al., 2009). The material production data of jute, PP and cotton was included 
in the production inventory, as well as materials and energy requirements (assumed the same 
as those of the cotton bags). Based on the survey, we assumed that the composition of the 
bag was 80% jute, 10% PP and 10% cotton. Residues from production (1 %) were assumed to 
be landfilled. The recycling scenario was not considered for this type of carrier bag. 
 
4.3.9  LDPE waste bin bag 
The LDPE waste bin bag production and disposal via incineration was modelled in order to be 
used as avoided production in EOL3. The bag was modelled as soft plastic material (Riber et 
al., 2009) and its production was associated with the process of extrusion of plastic, due to the 
simplicity of the carrier bag. 5 % residues during production were assumed to be incinerated. 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   53 

 
5.  Life Cycle Impact 
Assessment 
5.1 
Results for each carrier bag 
This Section presents the characterized result scores for each carrier bag type and end-of-life 
scenario. The characterized result scores are presented in Tables 10 – 12 below, one for each 
end-of-life scenario. The LCIA results are relative and do not predict impacts on category end-
points, nor threshold levels, safety margins or risk levels. In order to facilitate the interpretation 
of the results, results for the same type of carrier bags have been grouped and discussed in 
detail in dedicated paragraphs. The results are subdivided according to the contribution of 
production, distribution, use, and end-of-life of packaging and carrier bag to the overall results. 
The colour scale of the contribution analysis in the following figures in this Section follows the 
same colour scale of Figure 4 in Section 4. The contribution analyses for materials and energy 
requirements in the manufacturing phase for each carrier bag are provided in table format. 
54   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 10. Characterized result scores for all carrier bag types, for the EOL1 end-of-life option (incineration). Results are provided per reference flow (see Table 8). 
 
Impact category 
io
CC 
OD 
HTC 
HTNC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD fos 
RD 
Water 
kg 
kg 
kg 
kBq 
kg NM 
mol 
mol 
kg 
kg 
kg 
Scenar
CTUh 
CTUh 
CTUe 
MJ 

CO
CFC11eq 
2 eq 
PM2.5 eq  U235 eq 
VOC 
H+ eq 
N eq 
P eq 
N eq 
Sb eq 
LDPEavg 
1.1E-01 
1.2E-09 
1.3E-09 
-1.1E-08 
1.6E-05 
6.0E-04 
2.0E-04 
1.1E-04 
8.7E-05 
-5.6E-07 
2.3E-05 
7.1E-02 
1.7E+00 
1.9E-06 
4.4E-02 
LDPEs 
1.7E-01 
1.7E-09 
2.0E-09 
-1.7E-08 
2.3E-05 
8.9E-04 
2.9E-04 
1.7E-04 
1.3E-04 
-8.3E-07 
3.4E-05 
1.1E-01 
2.5E+00 
2.7E-06 
6.5E-02 
LDPEh 
1.3E-01 
1.4E-09 
1.6E-09 
-1.3E-08 
1.9E-05 
7.3E-04 
2.3E-04 
1.4E-04 
1.0E-04 
-6.8E-07 
2.8E-05 
8.6E-02 
2.0E+00 
2.2E-06 
5.3E-02 
LDPErec 
2.3E-01 
2.7E-09 
2.8E-09 
-2.3E-08 
3.5E-05 
1.3E-03 
4.1E-04 
2.5E-04 
2.0E-04 
-8.7E-07 
5.0E-05 
1.5E-01 
3.5E+00 
3.8E-06 
5.3E-02 
PP 
6.5E-01 
5.0E-08 
2.6E-09 
-5.4E-08 
1.1E-04 
8.7E-03 
9.3E-04 
5.8E-04 
9.6E-04 
1.1E-05 
1.8E-04 
2.7E-01 
1.0E+01 
2.3E-06 
7.8E-01 
PP 
5.6E-01 
4.4E-08 
2.2E-09 
-4.7E-08 
9.4E-05 
7.5E-03 
8.1E-04 
5.0E-04 
8.3E-04 
9.9E-06 
1.5E-04 
2.3E-01 
9.0E+00 
2.0E-06 
6.8E-01 
wov 
PET 
7.7E-01 
6.4E-08 
7.0E-09 
-1.6E-08 
2.7E-04 
1.4E-02 
9.6E-04 
1.1E-03 
1.9E-03 
3.8E-05 
2.2E-04 
5.1E-01 
1.2E+01 
2.1E-05 
1.4E+00 
rec 
PET 
2.6E-01 
2.2E-08 
2.4E-09 
-5.3E-09 
9.8E-05 
4.6E-03 
3.3E-04 
4.0E-04 
6.9E-04 
1.4E-05 
8.9E-05 
1.7E-01 
4.1E+00 
7.3E-06 
4.7E-01 
pol 
BP 
9.0E-02 
1.5E-08 
2.3E-09 
3.1E-08 
1.2E-04 
3.8E-03 
3.4E-04 
7.4E-04 
1.4E-03 
1.6E-05 
2.4E-04 
1.3E-01 
2.9E+00 
5.1E-06 
2.2E-02 
PAP 
6.0E-02 
1.2E-08 
1.5E-09 
8.9E-08 
1.7E-04 
6.2E-03 
3.5E-04 
4.2E-04 
1.1E-03 
1.7E-05 
1.4E-04 
2.0E-01 
1.2E+00 
3.8E-05 
3.4E-01 
PAP 
1.8E-01 
2.7E-08 
1.6E-09 
2.4E-09 
2.9E-04 
3.7E-03 
4.6E-04 
5.8E-04 
1.4E-03 
8.1E-06 
1.7E-04 
1.3E-01 
3.6E+00 
5.1E-06 
2.4E-01 

COM 
1.8E+00 
1.2E-06 
4.3E-08 
-1.8E-07 
2.9E-03 
4.0E-02 
4.8E-03 
1.1E-02 
3.4E-02 
2.4E-04 
2.5E-03 
4.4E+00 
2.9E+01 
3.2E-05 
5.5E+00 
COTorg 
1.1E+01 
2.8E-05 
4.9E-07 
1.6E-06 
1.1E-02 
3.8E-01 
2.5E-02 
5.7E-02 
1.4E-01 
1.4E-03 
9.7E-03 
3.3E+01 
2.0E+02 
4.4E-04 
7.6E+01 
COT 
3.9E+00 
1.0E-05 
1.7E-07 
5.6E-07 
3.8E-03 
1.3E-01 
8.7E-03 
2.0E-02 
4.9E-02 
4.8E-04 
3.4E-03 
1.2E+01 
7.2E+01 
1.6E-04 
2.7E+01 

3.9E-02 
-2.4E-10 
1.9E-10 
-4.1E-09 
6.1E-06 
1.9E-04 
6.9E-05 
3.8E-05 
4.1E-05 
-1.6E-07 
7.5E-06 
2.0E-02 
6.0E-01 
2.6E-07 
2.4E-02 
 
 

 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   55 

 
Table 11. Characterized result scores for all carrier bag types, for the EOL2 end-of-life option (recycling). Results are provided per reference flow (see Table 8). 
 
Impact category 
io
CC 
OD 
HTC 
HTNC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD fos 
RD 
Water 
Scenar
kg 
kg 
kg 
kBq 
kg NM 
mol 
mol 
kg 
kg 
kg 
CTUh 
CTUh 
CTUe 
MJ 

CO2 eq 
CFC11 eq 
PM2.5 eq 
U235 eq 
VOC 
H+ eq 
N eq 
P eq 
N eq 
Sb eq 
LDPEavg 
8.2E-02 
5.6E-09 
1.3E-09 
-4.3E-10 
3.0E-05 
1.7E-03 
1.7E-04 
1.7E-04 
2.7E-04 
7.9E-07 
3.3E-05 
9.1E-02 
1.3E+00 
2.1E-06 
8.6E-02 
LDPEs 
1.2E-01 
8.3E-09 
1.9E-09 
-6.4E-10 
4.4E-05 
2.6E-03 
2.6E-04 
2.5E-04 
4.0E-04 
1.2E-06 
4.9E-05 
1.3E-01 
2.0E+00 
3.1E-06 
1.3E-01 
LDPEh 
9.8E-02 
6.7E-09 
1.6E-09 
-5.2E-10 
3.6E-05 
2.1E-03 
2.1E-04 
2.0E-04 
3.3E-04 
9.5E-07 
3.9E-05 
1.1E-01 
1.6E+00 
2.6E-06 
1.0E-01 
LDPErec 
1.7E-01 
1.2E-08 
2.7E-09 
-5.6E-10 
6.5E-05 
3.6E-03 
3.6E-04 
3.7E-04 
5.8E-04 
1.9E-06 
7.0E-05 
1.9E-01 
2.8E+00 
4.4E-06 
9.6E-02 
PP 
5.0E-01 
7.5E-08 
3.2E-09 
1.2E-08 
2.1E-04 
1.5E-02 
9.8E-04 
1.2E-03 
2.4E-03 
1.9E-05 
2.6E-04 
4.0E-01 
8.9E+00 
4.1E-06 
1.0E+00 
PP 
4.4E-01 
6.5E-08 
2.8E-09 
1.0E-08 
1.9E-04 
1.3E-02 
8.5E-04 
1.0E-03 
2.1E-03 
1.6E-05 
2.3E-04 
3.5E-01 
7.7E+00 
3.5E-06 
9.0E-01 
wov 
PET 
6.6E-01 
8.7E-08 
6.4E-09 
3.0E-08 
3.3E-04 
1.7E-02 
1.2E-03 
1.6E-03 
3.1E-03 
3.4E-05 
3.0E-04 
8.7E-01 
1.2E+01 
1.7E-05 
1.3E+00 
rec 
PET 
2.1E-01 
2.8E-08 
2.0E-09 
9.4E-09 
1.1E-04 
5.5E-03 
3.7E-04 
5.1E-04 
1.0E-03 
1.1E-05 
1.1E-04 
2.9E-01 
3.6E+00 
5.2E-06 
4.1E-01 
pol 
BP 















PAP 
1.1E-01 
1.9E-08 
1.7E-09 
9.7E-08 
2.5E-04 
8.1E-03 
4.4E-04 
6.5E-04 
1.6E-03 
1.8E-05 
1.6E-04 
2.6E-01 
2.2E+00 
3.7E-05 
1.6E+00 
PAP 
2.3E-01 
3.3E-08 
1.8E-09 
1.1E-08 
3.7E-04 
5.6E-03 
5.5E-04 
8.0E-04 
1.9E-03 
8.9E-06 
1.9E-04 
1.8E-01 
4.6E+00 
4.8E-06 
1.5E+00 

COM 















COTorg 















COT 















 
 
56   The D  
anish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 12. Characterized result scores for all carrier bag types, for the EOL3 end-of-life option (secondary reuse as a waste bin bag). Results are provided per refer-
ence flow (see Table 8). 

Impact category 
 
io

CC 
OD 
HTC 
HTNC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD fos 
RD 
Water 
kg 
kg 
CTU 
CTU 
kg 
kBq 
kg NM 
mol 
mol 
kg 
kg 
kg 
Scenar
CTUe 
MJ 

CO2 eq 
CFC11 eq 


PM2.5 eq 
U235 eq 
VOC 
H+ eq 
N eq 
P eq 
N eq 
Sb eq 
LDPE 
7.2E-02 
1.4E-09 
1.1E-09 
-7.1E-09 
9.6E-06 
4.2E-04 
1.3E-04 
7.5E-05 
4.6E-05 
-4.1E-07 
1.6E-05 
5.2E-02 
1.1E+00 
1.6E-06 
2.0E-02 
avg 
LDPE 
9.8E-02 
2.2E-09 
1.6E-09 
-9.5E-09 
1.3E-05 
5.7E-04 
1.7E-04 
1.0E-04 
5.8E-05 
-5.6E-07 
2.1E-05 
7.2E-02 
1.5E+00 
2.3E-06 
1.7E-02 

LDPE 
9.1E-02 
1.7E-09 
1.4E-09 
-8.9E-09 
1.2E-05 
5.2E-04 
1.6E-04 
9.3E-05 
5.9E-05 
-5.0E-07 
1.9E-05 
6.4E-02 
1.4E+00 
1.9E-06 
-5.7E-02 

LDPE 
1.6E-01 
3.1E-09 
2.4E-09 
-1.5E-08 
2.4E-05 
9.4E-04 
2.7E-04 
1.7E-04 
1.2E-04 
-5.6E-07 
3.5E-05 
1.1E-01 
2.4E+00 
3.3E-06 
2.9E-02 
rec 
PP 
6.0E-01 
5.1E-08 
2.3E-09 
-4.9E-08 
1.0E-04 
8.5E-03 
8.4E-04 
5.3E-04 
9.0E-04 
1.2E-05 
1.7E-04 
2.4E-01 
9.6E+00 
2.0E-06 
7.6E-01 
PP 
5.0E-01 
4.4E-08 
1.9E-09 
-4.0E-08 
8.4E-05 
7.2E-03 
6.9E-04 
4.4E-04 
7.6E-04 
1.0E-05 
1.4E-04 
2.0E-01 
8.0E+00 
1.6E-06 
6.5E-01 
wov 
PET 
6.9E-01 
6.5E-08 
6.7E-09 
-8.5E-09 
2.6E-04 
1.3E-02 
8.3E-04 
1.0E-03 
1.8E-03 
3.9E-05 
2.0E-04 
4.7E-01 
1.1E+01 
2.0E-05 
1.4E+00 
rec 
PET 
2.1E-01 
2.2E-08 
2.1E-09 
5.4E-10 
8.9E-05 
4.3E-03 
2.4E-04 
3.5E-04 
6.3E-04 
1.4E-05 
7.8E-05 
1.4E-01 
3.2E+00 
6.9E-06 
4.5E-01 
pol 
BP 
1.3E-02 
1.5E-08 
2.0E-09 
3.9E-08 
1.0E-04 
3.5E-03 
2.0E-04 
6.6E-04 
1.3E-03 
1.7E-05 
2.2E-04 
9.5E-02 
1.7E+00 
4.6E-06 
-2.6E-02 
PAP 
-2.1E-02 
1.3E-08 
1.1E-09 
9.7E-08 
1.6E-04 
5.8E-03 
2.0E-04 
3.5E-04 
1.0E-03 
1.7E-05 
1.2E-04 
1.6E-01 
-1.4E-02 
3.7E-05 
2.9E-01 
PAP 
1.1E-01 
2.7E-08 
1.2E-09 
9.7E-09 
2.7E-04 
3.3E-03 
3.4E-04 
5.1E-04 
1.3E-03 
8.4E-06 
1.6E-04 
9.5E-02 
2.5E+00 
4.7E-06 
1.9E-01 

COM 
1.7E+00 
1.2E-06 
4.3E-08 
-1.8E-07 
2.9E-03 
4.0E-02 
4.7E-03 
1.1E-02 
3.4E-02 
2.4E-04 
2.5E-03 
4.4E+00 
2.8E+01 
3.2E-05 
5.5E+00 
COTorg 
1.1E+01 
2.8E-05 
4.9E-07 
1.6E-06 
1.1E-02 
3.8E-01 
2.5E-02 
5.7E-02 
1.4E-01 
1.4E-03 
9.7E-03 
3.3E+01 
2.0E+02 
4.4E-04 
7.6E+01 
COT 
3.8E+00 
1.0E-05 
1.7E-07 
5.7E-07 
3.8E-03 
1.3E-01 
8.6E-03 
2.0E-02 
4.8E-02 
4.8E-04 
3.4E-03 
1.2E+01 
7.1E+01 
1.6E-04 
2.7E+01 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   57 

 
5.1.1  LDPE bags: LDPEavg, LDPEs, LDPEh, LDPErec, W 
The performance of LDPE carrier bags can be described with the results associated with sce-
nario LDPEavg for LDPE carrier bags with average characteristics. The contribution of produc-
tion, distribution and end-of-life to the results was proportionally the same for scenarios 
LDPEs, LDPEh and LDPErec, which differed for the weight of carrier bag and number of carri-
er bags needed to fulfil the function expressed in the functional unit. The results for the climate 
change impact category for LDPEavg and the three end-of-life options is presented in Figure 
8, with results subdivided according to production, distribution, use and end-of-life for the 
packaging and the carrier bag (contribution analysis). A dedicated contribution analysis for the 
production phase for the average virgin LDPE carrier bag is presented in Table 13. 
For EOL1, LDPE bags presented net impacts for the climate change impact category. 70 % of 
the impacts were related to the production of the carrier bag, of which 71 % were solely related 
to the LDPE material production. The second largest contribution to the climate change im-
pacts was connected to the incineration process, where the fossil carbon in the LDPE was 
released to the atmosphere through air emissions. In this case, the recovery of electricity and 
heat from the incineration process lead to less savings in fossil carbon emissions than the 
direct emissions. Further climate change impacts were linked to the distribution phase, mostly 
from the transportation of the carrier bag.  
 
EOL2 presented net climate change impacts as well, but with a lower magnitude than EOL1. 
The production and distribution phases led to the same climate change impacts as EOL1, but 
the recycling of LDPE at end-of-life provided climate change savings, which were mainly as-
cribable to the recovery of LDPE as secondary material for the market and consequent avoid-
ed LDPE production. Moreover, less fossil carbon was incinerated and released to atmos-
phere. EOL3 presented lower climate change impacts than EOL1 and EOL2. The reduced net 
contribution of the production and distribution phases presented in Figure 8 are due to the 
subtracted impacts connected to the waste bin bag that was avoided with the secondary reuse 
of the LDPE carrier bag. Emissions of carbon fossil to atmosphere were also lower due to the 
prevented emissions that would have occurred with incineration of the waste bin bag. 
 
 
58   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 13. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the virgin LDPE carrier bag and the management of residues obtained 
during production. The Table presents the characterized result for each impact catego-
ry, with the percent contribution given by the processes involved. Results provided for 
1 average LDPE carrier bag. 

Result 
Contributing processes: energy and ancillary materials 
Impact 
Unit 
score 
category 
Virgin LDPE 
Calcium 
Titanium 
Management 
(PRO) 
Electricity 
Heat 
Ink 
production 
carbonate 
dioxide 
residues 
CC 
kg CO2 eq 
8.0E-02 
71% 
5% 
8% 
6% 
7% 
2% 
2% 
OD 
kg CFC11 
3.0E-09 
12% 
19% 
30% 
10% 
26% 
3% 
0% 
eq 
HTC 
CTUh 
1.6E-09 
37% 
3% 
-1% 
2% 
60% 
1% 
-1% 
HTNC 
CTUh 
9.7E-10 
76% 
73% 
-79% 
28% 
58% 
5% 
-61% 
PM 
kgPM2.5 
4.1E-05 
73% 
9% 
-2% 
3% 
16% 
3% 
-3% 
eq 
IR 
kBq U235 
5.5E-04 
20% 
97% 
-28% 
7% 
8% 
2% 
-6% 
eq 
POF 
kg 
3.0E-04 
87% 
3% 
1% 
2% 
8% 
1% 
-2% 
NMVOC 
TA 
mol H+ eq 
3.2E-04 
83% 
6% 
0% 
3% 
12% 
2% 
-6% 
TE 
mol N eq 
5.3E-04 
89% 
6% 
0% 
4% 
3% 
3% 
-5% 
FE 
kg P eq 
5.7E-07 
24% 
80% 
-38% 
47% 
37% 
18% 
-68% 
ME 
kg N eq 
5.3E-05 
80% 
5% 
1% 
4% 
9% 
5% 
-3% 
ET 
CTUe 
6.6E-02 
56% 
2% 
-1% 
3% 
34% 
1% 
5% 
RD fos 
MJ 
2.2E+00 
85% 
4% 
6% 
2% 
4% 
1% 
-3% 
RD 
kg Sb eq 
1.9E-06 
5% 
0% 
0% 
11% 
81% 
2% 
0% 
Water 

3.8E-02 
7% 
122% 
-33% 
9% 
5% 
-2% 
-7% 
Climate change, LDPEavg 
0,12
 
0,1
w
flo 
0,08
nce 
0,06
/ refere 0,04
eq 
2  
0,02
CO
kg 

0
-0,02
EOL1: Incineration
EOL2: Recycling
EOL3: Reuse as bin
End-of-life scenario 
PRO
DIS
USE
DIS EOL
EOL
Net
 
Figure 17. Characterized results for the climate change impact category and the three 
end-of-life options, expressed as kg CO2 equivalents per reference flow, for the LDPE 
carrier bag LDPEavg. PRO: production, DIS: distribution, USE: use; DIS EOL: end-of-
life, packaging; EOL: end-of-life, carrier bag; NET: net result. 

 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   59 

 
Overall, the climate change results indicate that recycling an LDPE carrier bag provides lower 
impacts than incinerating it. Secondary reuse as waste bin bag, however, results in more ben-
efits than recycling. This trend in the impacts could be observed also for a few other impact 
categories, which are: photochemical ozone formation, human toxicity, cancer effects and 
resource depletion, fossil.  
 
The remaining impact categories also provided overall net impacts, with exception of human 
toxicity, non-cancer effects, and freshwater eutrophication. In these cases savings were asso-
ciated with the recovery of electricity and heat in the incineration process. Contrarily to the 
climate change impact category, recycling never provided a better result than incineration for 
these impact categories. This was mostly due to the energy requirements for the recycling 
process and the transportation distances to the sorting and recycling facilities and the less 
energy recovered in the incineration process. Reusing the LDPE carrier bag as a waste bin 
bag before incineration always provided a better environmental performance than incineration 
and recycling. For all end-of-life options, the management and recycling of the cardboard 
packaging used for distribution of the carrier bags did not provide a high contribution to the 
results, with exception of water use. 
 
Regarding the contribution analysis for the production phase of average virgin LDPE carrier 
bag provided in Table 13 (common to EOL1, EOL2 and EOL3), the LDPE material production 
data largely contributed to the impacts in most of the impact categories, together with energy 
consumption. Negative scores in some impact categories are due to the use of a consequen-
tial database. Depending on the way consequential modelling is applied in Ecoinvent, the 
production of some intermediate exchanges can result in the decrease of production of anoth-
er, to which is assigned a negative sign. For example, in the case of market for heat from 
natural gas that was used for this project, utilization of this heat source may lead to the avoid-
ed use of other heat sources, with a negative net impact. 
 
The trend observed for LDPEavg in the results for all impact categories was similarly observed 
for all the LDPE carrier bags. Differences were due to the weight of the different carrier bag 
types and the number of bags necessary to fulfil the function. Figure 9 shows the climate 
change characterized results for all the LDPE carrier bag options (LDPEavg, LDPEs, LDPEh, 
LDPErec) and for the waste bin bag (W, also LDPE) for EOL1. Although some carrier bags 
had lower weight than the other options to which they are compared, LDPEs and LDPErec 
provided higher impacts because more than one bag was required in order to provide for the 
functionality expressed in the functional unit. Between LDPE carrier bags, LDPEh (LDPE with 
rigid handle) provided the best environmental performance for climate change. As previously 
explained in the assumptions paragraph, it was not possible to model LDPErec with recycled 
LDPE data, so the virgin LDPE production data was used instead.  
 
The trend observed for LDPEavg in the results for all impact categories was similarly observed 
for all the LDPE carrier bags. Differences were due to the weight of the different carrier bag 
types and the number of bags necessary to fulfil the function. Figure 9 shows the climate 
change characterized results for all the LDPE carrier bag options (LDPEavg, LDPEs, LDPEh, 
LDPErec) and for the waste bin bag (W, also LDPE) for EOL1. Although some carrier bags 
had lower weight than the other options to which they are compared, LDPEs and LDPErec 
provided higher impacts because more than one bag was required in order to provide for the 
functionality expressed in the functional unit. Between LDPE carrier bags, LDPEh (LDPE with 
rigid handle) provided the best environmental performance for climate change. As previously 
explained in the assumptions paragraph, it was not possible to model LDPErec with recycled 
LDPE data, so the virgin LDPE production data was used instead.  
 
60   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Climate change, EOL1 
0,25
 
0,20
flo
nce  0,15
/ refere 0,10
eq 

CO 
0,05
kg 
0,00
W
LDPEavg
LDPEs
LDPEh
LDPErec
Waste bin bag / LDPE grocery carrier bags 
PRO
DIS
USE
DIS EOL
EOL
 
Figure 9. Characterized results for the climate change impact category, incineration 
end-of-life option (EOL1) expressed as kg CO2 equivalents per reference flow, for the 
LDPE carrier bags LDPEavg, LDPEs, LDPEh, LDPErec and for the LDPE waste bin bag 
(W). PRO: production, DIS: distribution, USE: use; DIS EOL: end-of-life, packaging; 
EOL: end-of-life, carrier bag; NET: net result. 

 
5.1.2  PP bags: PP, PPwov 
The environmental performance of PP carrier bags can be described by the characterized 
results associated with PP (non-woven PP carrier bag). The results for PPwov presented the 
same contribution analysis, with slightly lower magnitude, since PPwov presented a slightly 
lighter weight and consequently required less material and energy for its production.  
 
As observed for the LDPE carrier bags, climate change results presented overall net impacts. 
The impacts in EOL1 (and EOL2) were mainly associated with the production of the carrier 
bag, of which 69 % were associated with the production of PP (Figure 10). Emissions were 
also related to the release of fossil carbon to atmosphere during incineration and transporta-
tion. Recycling of PP presented lower impacts than incineration, for the recovery of material 
and lower fossil carbon release to atmosphere. EOL3 presented reduced impacts with respect 
to EOL1 for the savings associated with the avoided use and disposal of the waste bin bag, 
but with a small difference. The mass of avoided LDPE was proportionally lower than in the 
case of LDPE carrier bags, therefore it could not reduce the production and distribution im-
pacts as in the case of LDPE carrier bags. As a consequence, recycling resulted as more 
beneficial disposal option than secondary reuse. PP carrier bags were considerably heavier 
than the waste bin bag, so could proportionally substitute more primary produced PP than 
avoiding the production of the LDPE waste bin bag. The same trend could be observed for the 
impact category resource depletion, fossil.  
 
All the remaining impact categories presented net impacts, with exception of human toxicity, 
non-cancer effects. Savings for the latter impact category were associated with the recovery of 
electricity and heat in the incineration process. However, for all impact categories different 
than climate change, recycling was never more beneficial than incineration, and reuse as a 
waste bin bag always provided the overall best environmental performance, even if with only a 
slight difference with incineration. It is worth underlining that PP carrier bags may also not fully 
provide for the functionality of an LDPE waste bin bag due to their permeability to water. 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   61 

 
Table 14 provides the contribution analysis for the production phase for the PP carrier bag. 
Similarly to LDPE, the production of PP contributes largely to the impacts of the production 
phase, but to a lower extent. Other processes contributing to the impacts of production are 
electricity, heat and cotton, necessary for the cotton threads. 
Table 14. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the virgin PP carrier bag and the management of residues obtained 
during production. The Table presents the characterized result for each impact catego-
ry, with the percent contribution given by the processes involved. Results provided for 
1 PP bag. 

Result 
Contributing processes: energy and ancillary materials 
Impact cat-
Unit 
score 
egory 
PP pro-
Cotton 
Management 
(PRO) 
Electricity 
Heat 
Water 
Ink 
duction 
thread 
residues 
CC 
kg CO2 
4.5E-01 
66% 
12% 
7% 
0% 
4% 
8% 
4% 
eq 
OD 
kg 
CFC11 
6.0E-08 
3% 
13% 
7% 
0% 
72% 
4% 
0% 
eq 
HTC 
CTUh 
3.5E-09 
55% 
16% 
-3% 
0% 
21% 
9% 
1% 
HTNC 
CTUh 
1.3E-08 
23% 
73% 
-27% 
0% 
20% 
10% 
1% 
PM 
kgPM2.5  2.4E-04 
59% 
22% 
-1% 
0% 
7% 
14% 
0% 
eq 
IR 
kBq 
8.1E-03 
8% 
91% 
-9% 
0% 
7% 
4% 
0% 
U235 eq 
POF 
kg 
1.4E-03 
81% 
8% 
1% 
0% 
3% 
7% 
0% 
NMVOC 
TA 
mol H+ 
1.6E-03 
71% 
15% 
0% 
0% 
5% 
9% 
0% 
eq 
TE 
mol N 
3.3E-03 
69% 
14% 
0% 
0% 
6% 
11% 
0% 
eq 
FE 
kg P eq 
1.7E-05 
40% 
37% 
-6% 
0% 
12% 
16% 
0% 
ME 
kg N eq  3.4E-04 
63% 
11% 
1% 
0% 
4% 
21% 
0% 
ET 
CTUe 
2.2E-01 
59% 
9% 
-2% 
0% 
22% 
10% 
3% 
RD fos 
MJ 
1.3E+01 
79% 
9% 
4% 
0% 
2% 
5% 
0% 
RD 
kg Sb eq  2.2E-06 
10% 
0% 
1% 
0% 
31% 
57% 
0% 
Water 

7.1E-01 
2% 
94% 
-9% 
0% 
16% 
-3% 
0% 
 
 
5.1.3  Recycled PET carrier bags: PETrec 
Characterized climate change results for recycled PET carrier bags are provided in Figure 11 
below. Recycled PET carrier bags showed a similar trend with respect to previously examined 
fossil carbon-based carrier bags: overall net climate change impacts, which was governed by 
the carrier bag production phase (80 %, Table 15).  
 
Although PET bags were large in volume and could potentially substitute the highest fraction 
of waste bin bags (Table 4), the difference between EOL1 and EOL3 was small, due to the 
proportionally lower weight of the avoided waste bin bag with respect to the PET bag. Recy-
cling the PET carrier bag provided lower environmental impacts than EOL1 and EOL3 due to 
the recovery of recycled PET material and lower carbon fossil emissions generated during the 
incineration phase. Recycling provided an environmentally better result than incineration and 
secondary reuse also for human toxicity, cancer effects, freshwater eutrophication, resource 
depletion and water consumption.  
 
62   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Climate change, PP 
0,7
  0,6
w
flo 
0,5
nce  0,4
0,3
/ refere
eq  
0,2

CO 
0,1
kg 
0
-0,1
EOL1: Incineration
EOL2: Recycling
EOL3: Reuse as bin
End-of-life scenario 
PRO
DIS
USE
DIS EOL
EOL
Net
 
Figure 10. Characterized results for the climate change impact category and the three 
end-of-life options, expressed as kg CO2 equivalents per reference flow, for the PP car-
rier bag PP. PRO: production, DIS: distribution, USE: use; DIS EOL: end-of-life, packag-
ing; EOL: end-of-life, carrier bag; NET: net result. 

 
For the remaining impact categories, recycling was worse than incineration, and reuse as 
waste bin bag before incineration provided only slightly better environmental results. Savings 
occur for the human toxicity, non-cancer effects impact category due to the energy recovered 
during incineration. 
 
Table 15. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the recycled PET carrier bag and the management of residues ob-
tained during production. The Table presents the characterized result for each impact 
category, with the percent contribution given by the processes involved. Results pro-
vided for 1 recycled PET bag. 

Contributing processes: energy and ancillary materials 
Result 
Impact 
Unit 
score 
Recycled 
category 
Cotton 
Management 
(PRO) 
PET pro-
Electricity 
Heat 
Ink 
Water 
thread 
residues 
duction 
CC 
kg CO2 
5.8E-01 
80% 
10% 
5% 
1% 
3% 
0% 
1% 
eq 
OD 
kg 
CFC11 
7.4E-08 
25% 
11% 
6% 
1% 
58% 
0% 
0% 
eq 
HTC 
CTUh 
8.0E-09 
85% 
7% 
-1% 
1% 
9% 
0% 
-1% 
HTNC 
CTUh 
5.2E-08 
86% 
19% 
-7% 
1% 
5% 
0% 
-3% 
PM 
kgPM2.5  4.0E-04 
83% 
13% 
-1% 
2% 
4% 
0% 
-1% 
eq 
IR 
kBq 
1.3E-02 
47% 
55% 
-5% 
0% 
4% 
0% 
-1% 
U235 eq 
kg 
POF 
1.5E-03 
88% 
8% 
1% 
1% 
3% 
0% 
-1% 
NMVOC 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   63 

 
Table 15. (continued) Contribution analysis for the production (PRO) processes, which 
included the manufacturing of the recycled PET carrier bag and the management of 
residues obtained during production. The Table presents the characterized result for 
each impact category, with the percent contribution given by the processes involved. 
Results provided for 1 recycled PET bag. 

Contributing processes: energy and ancillary materials 
Result 
Impact cat-
Unit 
score 
Recycled 
egory 
Cotton 
Management 
(PRO) 
PET produc-
Electricity 
Heat 
Ink 
Water 
thread 
residues 
tion 
mol H+ 
TA 
2.2E-03 
86% 
11% 
0% 
1% 
4% 
0% 
-2% 
eq 
mol N 
TE 
4.3E-03 
84% 
11% 
0% 
2% 
5% 
0% 
-2% 
eq 
FE 
kg P eq  4.5E-05 
85% 
14% 
-2% 
1% 
5% 
0% 
-3% 
kg N 
ME 
3.8E-04 
84% 
9% 
1% 
4% 
4% 
0% 
-1% 
eq 
ET 
CTUe 
4.7E-01 
67% 
4% 
-1% 
1% 
10% 
0% 
18% 
RD fos 
MJ 
1.4E+01 
86% 
8% 
4% 
1% 
2% 
0% 
-1% 
kg Sb 
RD 
2.1E-05 
95% 
0% 
0% 
1% 
3% 
0% 
0% 
eq 
Water 

1.4E+00 
49% 
48% 
-5% 
0% 
8% 
0% 
-1% 
Climate change, PETrec 
0,9
  0,8
w
flo 
0,7
0,6
nce 
0,5
/ refere 0,4
eq 
2  
0,3
CO 0,2
kg  0,1
0
EOL1: Incineration
EOL2: Recycling
EOL3: Reuse as bin
End-of-life scenario 
PRO
DIS
USE
DIS EOL
EOL
Net
 
Figure 11. Characterized results for the climate change impact category and the three 
end-of-life options, expressed as kg CO2 equivalents per reference flow, for the recycled 
PET carrier bag PETrec. PRO: production, DIS: distribution, USE: use; DIS EOL: end-of-
life, packaging; EOL: end-of-life, carrier bag; NET: net result. 

 
64   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
5.1.4  Polyester bags: PETpol 
In accordance with what already observed for other carrier bags, climate change impacts were 
mostly ascribable to the carrier bag production phase (76 % of the climate change impacts, as 
observed for recycled PET carrier bags). Table 16 provides the contribution analysis for the 
production phase.  
 
Table 16. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the virgin PET polyester carrier bag and the management of residues 
obtained during production. The Table presents the characterized result for each im-
pact category, with the percent contribution given by the processes involved. Results 
provided for 1 PET polyester bag. 

Contributing processes: energy and ancillary materials 
Result 
Impact 
Unit 
score 
Virgin 
category 
Cotton 
Management 
(PRO) 
PET pro- Electricity 
Heat 
Ink 
Water 
thread 
residues 
duction 
CC 
kg CO2 
2.0E-01 
76% 
9% 
5% 
6% 
3% 
0% 
1% 
eq 
OD 
kg 
CFC11 
2.5E-08 
23% 
11% 
6% 
3% 
58% 
0% 
0% 
eq 
HTC 
CTUh 
2.7E-09 
82% 
7% 
-1% 
4% 
9% 
0% 
-1% 
HTNC 
CTUh 
1.7E-08 
83% 
19% 
-7% 
3% 
5% 
0% 
-3% 
PM 
kgPM2.5  1.4E-04 
78% 
12% 
-1% 
8% 
4% 
0% 
-1% 
eq 
IR 
kBq 
4.4E-03 
44% 
56% 
-6% 
2% 
4% 
0% 
-1% 
U235 eq 
POF 
kg 
5.0E-04 
84% 
8% 
1% 
6% 
3% 
0% 
-1% 
NMVOC 
TA 
mol H+ 
7.5E-04 
81% 
11% 
0% 
6% 
4% 
0% 
-2% 
eq 
TE 
mol N 
1.5E-03 
79% 
10% 
0% 
8% 
5% 
0% 
-1% 
eq 
FE 
kg P eq 
1.6E-05 
81% 
14% 
-2% 
6% 
4% 
0% 
-2% 
ME 
kg N eq  1.4E-04 
72% 
8% 
1% 
16% 
4% 
0% 
-1% 
ET 
CTUe 
1.5E-01 
63% 
4% 
-1% 
5% 
11% 
0% 
18% 
RD fos 
MJ 
4.8E+00 
83% 
8% 
4% 
4% 
2% 
0% 
-1% 
RD 
kg Sb eq  7.2E-06 
91% 
0% 
0% 
6% 
3% 
0% 
0% 
Water 

4.5E-01 
49% 
49% 
-5% 
-2% 
8% 
0% 
-1% 
 
EOL 3 was the most favourable disposal option for climate change, while EOL1 was the worst, 
due to fossil carbon emissions to air during incineration. The difference between EOL1 and 
EOL3 results for climate change is due to the lower weight of the polyester bag with respect to 
the recycled PET carrier bag, which therefore substitutes less material when reused as a 
waste bin bag. EOL3 is the disposal option that provides the lowest impacts in most of the 
impact categories assessed. 
 
5.1.5  Comparison of fossil plastic carrier bags 
The following Figure 12 aims at comparing the climate change results associated with the 
fossil carbon-based grocery shopping bags that have been presented so far. The comparison 
of results highlights that the lowest climate change impacts were calculated for LDPE. This 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   65 

 
result is related to the fact that LDPE carrier bags were the lightest carrier bag alternatives that 
could provide for the volume and weight holding capacity of the functional unit, while requiring 
the least amount of material to be produced. Between LDPE carrier bags, the best environ-
mental performance for climate change was associated with the LDPE carrier with rigid han-
dle, since two of the simple LDPE (LDPEs) and recycled LDPE (LDPErec) would be required 
to provide for the same function. 
 
Climate change, EOL1 
0,90
  0,80
w
flo 
0,70
0,60
nce 
0,50
/ refere 0,40
eq 
2  
0,30
CO 0,20
kg  0,10
0,00
LDPEavg
LDPEs
LDPEh
LDPErec
PP
PPwov
PETrec
PETpol
Fossil plastic grocery carrier bags 
PRO
DIS
USE
DIS EOL
EOL
 
Figure 12. Characterized results for the climate change impact category, incineration 
end-of-life option (EOL1) expressed as kg CO2 equivalents per reference flow, for the 
fossil carbon-based carrier bags LDPEavg, LDPEs, LDPEh, LDPErec, PP, PPwov, 
PETrec and PETpol. PRO: production, DIS: distribution, USE: use; DIS EOL: end-of-life, 
packaging; EOL: end-of-life, carrier bag; NET: net result. 

5.1.6  Biopolymer bags: BP 
Climate change impacts for the starch-complexed biopolymer bags (BP) are provided in Figure 
13. EOL2 scored zero impacts because recycling was not considered viable for this type of 
carrier bag material. Production of the carrier bag presented the highest contribution to the 
impacts. The contribution analysis for the production phase shown in Table 17 shows that the 
production of biopolymer is the process mostly contributing to the results. However, differently 
than for fossil carbon-based grocery shopping bags, incineration provided savings due to the 
considerably lower content of fossil carbon in the bag material than the previously examined 
bags. Secondary reuse provided considerably lower impacts than incineration, because reuse 
as a waste bin bag would avoid the production and disposal of a fossil carbon-based bag. For 
the remaining impact categories, EOL3 always provided a better performance than EOL1, but 
with a proportionally lower difference between the two options. Reuse of BP carrier bag as a 
waste bin bag might however not provide for the same functionality of the LDPE waste bin 
bag, since the survey carried out at DTU Environment has evidenced a lower resistance to 
puncturing and tearing than other bags. All impact categories provided net impacts with excep-
tion of water resource use in EOL3, where the consumption of water was lower than the water 
use for the waste bin bag production. 
 
 
66   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 17. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the biopolymer carrier bag and the management of residues obtained 
during production. The Table presents the characterized result for each impact catego-
ry, with the percent contribution given by the processes involved. Results provided for 
1 biopolymer bag. 

Contributing processes: energy and ancillary materials 
Impact cate-
Result score 
Unit 
Manage-
gory 
(PRO) 
Biopolymer 
Titanium 
Electricity 
Water 
Ink 
ment resi-
production 
dioxide 
dues 
CC 
kg CO2 eq 
4.9E-02 
86% 
9% 
5% 
0% 
1% 
0% 
OD 
kg CFC11 eq 
7.2E-09 
87% 
8% 
5% 
0% 
0% 
0% 
HTC 
CTUh 
1.2E-09 
62% 
4% 
34% 
0% 
0% 
0% 
HTNC 
CTUh 
1.9E-08 
95% 
4% 
1% 
0% 
0% 
0% 
PM 
kgPM2.5 eq 
6.3E-05 
89% 
6% 
4% 
0% 
1% 
0% 
IR 
kBq U235 eq 
1.7E-03 
65% 
34% 
1% 
0% 
0% 
0% 
POF 
kg NMVOC 
1.8E-04 
89% 
5% 
5% 
0% 
1% 
0% 
TA 
mol H+ eq 
4.1E-04 
91% 
5% 
4% 
0% 
0% 
0% 
TE 
mol N eq 
7.4E-04 
94% 
5% 
1% 
0% 
1% 
0% 
FE 
kg P eq 
8.3E-06 
93% 
6% 
1% 
0% 
0% 
0% 
ME 
kg N eq 
1.2E-04 
95% 
2% 
2% 
0% 
1% 
0% 
ET 
CTUe 
5.5E-02 
79% 
3% 
17% 
0% 
0% 
0% 
RD fos 
MJ 
1.5E+00 
91% 
6% 
3% 
0% 
1% 
0% 
RD 
kg Sb eq 
2.5E-06 
78% 
0% 
26% 
0% 
1% 
-5% 
Water 

2.1E-03 
-26% 
87% 
41% 
3% 
-13% 
8% 
 
Climate change, BP  
0,14
0,12
 
w

0,1
flo 0,08
nce  0,06
0,04
/ refere
0,02
eq 

0
CO
kg  
-0,02
-0,04
-0,06
EOL1: Incineration
EOL2: Recycling
EOL3: Reuse as bin
End-of-life scenario 
PRO
DIS
USE
DIS EOL
EOL
Net
 
Figure 13. Characterized results for the climate change impact category and the three 
end-of-life options, expressed as kg CO2 equivalents per reference flow, for the starch-
complexed biopolymer carrier bag BP. PRO: production, DIS: distribution, USE: use; 
DIS EOL: end-of-life, packaging; EOL: end-of-life, carrier bag; NET: net result. 

 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   67 

 
5.1.7  Paper bags: PAP, PAPb 
The environmental performance of paper carrier bags was calculated for the case of both 
unbleached and bleached craft paper. The characterized results for the climate change impact 
category for unbleached paper (PAP) are presented in Figure 14. Table 18 provides the con-
tribution analysis for the production phase. The majority of the impacts from the production can 
be ascribed to craft paper production.  
 
Table 18. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the paper carrier bag and the management of residues obtained dur-
ing production. The Table presents the characterized result for each impact category, 
with the percent contribution given by the processes involved. Results provided for 1 
unbleached paper bag. 

Result 
Contributing processes: energy and ancillary materials 
Impact 
Unit 
score 
category 
Craft paper 
Management 
(PRO) 
Electricity 
Glue 
Ink 
production 
residues 
CC 
kg CO2 
3.1E-02 
87% 
6% 
2% 
10% 
-5% 
eq 
OD 
kg 
CFC11 
4.9E-09 
74% 
6% 
16% 
4% 
0% 
eq 
HTC 
CTUh 
7.1E-10 
93% 
3% 
1% 
4% 
-1% 
HTNC 
CTUh 
4.9E-08 
100% 
1% 
0% 
0% 
-1% 
PM 
kgPM2.
8.8E-05 
95% 
2% 
0% 
3% 
-1% 
5 eq 
IR 
kBq 
2.4E-03 
78% 
11% 
11% 
1% 
-1% 
U235 eq 
kg 
1.7E-04 
91% 
3% 
3% 
5% 
-2% 
POF 
NMVOC 
mol H+ 
2.5E-04 
94% 
3% 
2% 
5% 
-5% 
TA 
eq 
mol N 
6.0E-04 
93% 
3% 
1% 
5% 
-2% 
TE 
eq 
FE 
kg P eq 
8.3E-06 
97% 
3% 
0% 
3% 
-3% 
ME 
kg N eq 
6.6E-05 
89% 
2% 
1% 
9% 
-2% 
ET 
CTUe 
6.9E-02 
96% 
1% 
1% 
3% 
-1% 
RD fos 
MJ 
5.9E-01 
79% 
7% 
11% 
9% 
-6% 
kg Sb 
1.9E-05 
100% 
0% 
0% 
1% 
0% 
RD 
eq 
Water 

1.4E-01 
88% 
17% 
-2% 
-1% 
-1% 
 
As in the case of the biopolymer bag, climate change impacts for the incineration process 
provided net savings. The production process contributed proportionally less to the climate 
change impacts than in the previously examined bags. Recycling of paper provided net and 
higher climate change impacts than incineration, due to transportation distances, energy re-
quirements and, mostly, to the low savings associated with avoided production of craft paper. 
The quality of craft paper used for paper bags was assumed to be only recyclable into paper 
for cardboard production.  
 
For all the remaining impact categories with exception of resource depletion, recycling always 
performed worse than incineration, and secondary reuse always provided the absolute lowest 
68   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
impacts (saving in the case of resource depletion), provided that the paper carrier bag can 
provide the same functionality as a waste bin bag than the LDPE waste bin bag. 
 
Impacts for the bleached paper bag (PAPb) were considerably higher due to the production 
phase of the bleached paper. Overall, the same trend between disposal options was observed, 
with recycling always providing larger impacts than incineration and secondary reuse. The 
results of the environmental assessment indicate that utilizing unbleached paper for the paper 
bag material is preferable than utilizing bleached paper. 
 
Climate change, PAP 
0,12
0,1
 
0,08
flo
0,06
nce  0,04
0,02
/ refere
0
eq 
2  
-0,02
CO -0,04
kg  -0,06
-0,08
EOL1: Incineration
EOL2: Recycling
EOL3: Reuse as bin
End-of-life scenario 
PRO
DIS
USE
DIS EOL
EOL
Net
 
Figure 14. Characterized results for the climate change impact category and the three 
end-of-life options, expressed as kg CO2 equivalents per reference flow, for the un-
bleached paper carrier bag PAP. PRO: production, DIS: distribution, USE: use; DIS 
EOL: end-of-life, packaging; EOL: end-of-life, carrier bag; NET: net result. 

 
5.1.8  Cotton and composite bags: COTorg, COT, COM 
The characterized results for the cotton bag options (COTorg, COT) and the carrier bag with 
composite materials (COM) are presented in the same paragraph due to their shared charac-
teristics. As it is illustrated for the climate change results for organic cotton in Figure 15, these 
types of carrier bags presented the highest observed impacts related to their production. EOL2 
scored zero in Figure 15 since recycling was not considered viable for this type of carrier bag. 
The same was assumed for COT and COM. 
 
In the case of organic cotton (COTorg), production contributed to 99 % of the impact, 98 % 
and 96% for COT and COM scenarios, respectively. The contribution analysis for the produc-
tion phase of these bags is provided in Tables 19 – 21. The high environmental cost of the 
cotton production can be ascribed to the energy and material required, which is responsible for 
80 % of the climate change impacts. In general, the results showed very little difference be-
tween EOL1 and EOL3, due to the comparatively small weight of the avoided waste bin bag in 
comparison to the mass (and resources required for its production) of the cotton bag. The 
same behaviour was observed for all impact categories, as well as for COT and COM, even if 
with a lower magnitude in the impacts. 
The environmental impacts connected to the production of the organic cotton bag (COTorg) 
were considerably higher than those of the conventional cotton bag (COT). This is due to the 
fact that organic cotton production does not involve the use of synthetic chemicals such as 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   69 

 
fertilizers and pesticides, which lowers the yield of the cultivation. Eventually, more resources 
and land are required to produce the same amount of cotton than in conventional cotton culti-
vation processes.  
 
Table 19. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the organic cotton carrier bag and the management of residues ob-
tained during production. The Table presents the characterized result for each impact 
category, with the percent contribution given by the processes involved. Results pro-
vided for 1 organic cotton bag. 

Contributing processes: energy and ancillary materials 
Result 
Impact catego- Unit 
score 
Cotton 
ry 
Electrici-
Management 
(PRO) 
produc-
Heat 
N fertiliser 
ty 
residues 
tion 
CC 
kg CO2 eq 
5.4E+00 
99% 
0% 
1% 
0% 
0% 
OD 
kg CFC11 eq 
1.4E-05 
100% 
0% 
0% 
0% 
0% 
HTC 
CTUh 
2.4E-07 
100% 
0% 
0% 
0% 
0% 
HTNC 
CTUh 
8.7E-07 
101% 
0% 
-1% 
0% 
0% 
PM 
kgPM2.5 eq 
5.5E-03 
100% 
0% 
0% 
0% 
0% 
IR 
kBq U235 eq 
1.9E-01 
100% 
0% 
0% 
0% 
0% 
POF 
kg NMVOC 
1.3E-02 
100% 
0% 
0% 
0% 
0% 
TA 
mol H+ eq 
2.9E-02 
100% 
0% 
0% 
0% 
0% 
TE 
mol N eq 
7.0E-02 
100% 
0% 
0% 
0% 
0% 
FE 
kg P eq 
6.8E-04 
100% 
0% 
0% 
0% 
0% 
ME 
kg N eq 
4.9E-03 
100% 
0% 
0% 
0% 
0% 
ET 
CTUe 
1.6E+01 
100% 
0% 
0% 
0% 
0% 
RD fos 
MJ 
1.0E+02 
99% 
0% 
1% 
0% 
0% 
RD 
kg Sb eq 
2.2E-04 
100% 
0% 
0% 
0% 
0% 
Water 

3.8E+01 
100% 
0% 
0% 
0% 
0% 
Climate change, COTorg 
12
  10
w
flo

8
nce 
6
/ refere
4
eq 

2
CO
kg 

0
-2
EOL1: Incineration
EOL2: Recycling
EOL3: Reuse as bin
End-of-life scenario 
PRO
DIS
USE
DIS EOL
EOL
Net
 
Figure 15. Characterized results for the climate change impact category and the three 
end-of-life options, expressed as kg CO2 equivalents per reference flow, for the organic 
cotton carrier bag COTORG. PRO: production, DIS: distribution, USE: use; DIS EOL: 
end-of-life, packaging; EOL: end-of-life, carrier bag; NET: net result. 

 
70   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 20. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the conventional cotton carrier bag and the management of residues 
obtained during production. The Table presents the characterized result for each im-
pact category, with the percent contribution given by the processes involved. Results 
provided for 1 conventional cotton bag. 

Contributing processes: energy and ancillary 
Result 
materials 
Impact category 
Unit 
score 
(PRO) 
Cotton 
Management 
Electricity 
Heat 
production 
residues 
CC 
kg CO2 eq 
3.9E+00 
99% 
0% 
1% 
0% 
OD 
kg CFC11 
1.0E-05 
100% 
0% 
0% 
0% 
eq 
HTC 
CTUh 
1.7E-07 
100% 
0% 
0% 
0% 
HTNC 
CTUh 
6.2E-07 
101% 
0% 
-1% 
0% 
PM 
kgPM2.5 
3.9E-03 
100% 
0% 
0% 
0% 
eq 
IR 
kBq U235 
1.3E-01 
101% 
0% 
-1% 
0% 
eq 
POF 
kg NMVOC 
8.9E-03 
100% 
0% 
0% 
0% 
TA 
mol H+ eq 
2.1E-02 
100% 
0% 
0% 
0% 
TE 
mol N eq 
5.0E-02 
100% 
0% 
0% 
0% 
FE 
kg P eq 
4.8E-04 
100% 
0% 
0% 
0% 
ME 
kg N eq 
3.5E-03 
100% 
0% 
0% 
0% 
ET 
CTUe 
1.1E+01 
100% 
0% 
0% 
0% 
RD fos 
MJ 
7.2E+01 
99% 
0% 
1% 
0% 
RD 
kg Sb eq 
1.6E-04 
100% 
0% 
0% 
0% 
Water 

2.7E-01 
100% 
0% 
0% 
0% 
 
Table 21. Contribution analysis for the production (PRO) processes, which included the 
manufacturing of the composite carrier bag and the management of residues obtained 
during production. The Table presents the characterized result for each impact catego-
ry, with the percent contribution given by the processes involved. Results provided for 
1 composite bag. 

Contributing processes: energy and ancillary mate-
 
rials 
Result 
Impact cate-
Man-
Unit 
score 
gory 
Jute 
Cotton 
agement 
(PRO) 
PP pro-
produc-
produc-
Electricity 
Heat 
duction 
residues 
tion 
tion 
 
CC 
kg CO2 
1.7E+00 
68% 
27% 
3% 
0% 
2% 
0% 
eq 
OD 
kg 
CFC11 
1.2E-06 
3% 
97% 
0% 
0% 
0% 
0% 
eq 
HTC 
CTUh 
4.3E-08 
52% 
48% 
1% 
0% 
0% 
0% 
HTNC 
CTUh 
-1.2E-07 
158% 
-62% 
0% 
0% 
4% 
0% 
PM 
kgPM2.
3.0E-03 
84% 
16% 
1% 
0% 
0% 
0% 
5 eq 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   71 

 
Table 21. (continued) Contribution analysis for the production (PRO) processes, which 
included the manufacturing of the composite carrier bag and the management of resi-
dues obtained during production. The Table presents the characterized result for each 
impact category, with the percent contribution given by the processes involved. Results 
provided for 1 composite bag. 

Contributing processes: energy and ancillary materials 
Result 
Man-
Impact cate-
Unit 
score 
Jute 
Cotton 
agement 
gory 
PP pro-
(PRO) 
produc-
produc-
Electricity 
Heat 
duction 
residues 
tion 
tion 
 
IR 
kBq 
U235 
3.6E-02 
59% 
44% 
0% 
0% 
-3% 
0% 
eq 
POF 
kg 
NMVO
5.0E-03 
74% 
21% 
5% 
0% 
0% 
0% 

TA 
mol H+ 
1.1E-02 
77% 
21% 
2% 
0% 
0% 
0% 
eq 
TE 
mol N 
3.5E-02 
82% 
17% 
1% 
0% 
0% 
0% 
eq 
FE 
kg P eq  2.4E-04 
76% 
24% 
1% 
0% 
-1% 
0% 
ME 
kg N eq  2.6E-03 
82% 
16% 
2% 
0% 
0% 
0% 
ET 
CTUe 
4.2E+00 
67% 
33% 
1% 
0% 
0% 
0% 
RD fos 
MJ 
3.0E+01 
62% 
29% 
7% 
0% 
3% 
0% 
RD 
kg Sb 
3.1E-05 
39% 
61% 
0% 
0% 
0% 
0% 
eq 
Water 

5.1E+00 
39% 
62% 
0% 
0% 
-2% 
0% 
 
5.2 
Overview 
The aim of the following Figures 16 and 17 is to provide a comparison between the climate 
change results for the EOL1 disposal scenarios of all carrier bag alternatives. Cotton and 
composite bags were left out of Figure 16 in order to visualize the results for the remaining 
carrier bags, which would be out scaled otherwise, as shown in the following Figure 17. 
 
The lowest climate change impacts were provided by LDPE carrier bags with rigid handle, 
paper bags and biopolymer bags, with slight differences in results. Heavier PP, PET, polyester 
and bleached paper carrier bags provided higher impact scores. The highest absolute impacts 
were scored by organic cotton bags, mostly for the environmental cost of the organic cotton 
production.  
72   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Climate change, EOL1 
0,9
0,8
 
0,7
flo 0,6
nce  0,5
0,4
/ refere 0,3
eq 
2  
0,2
CO 0,1
kg 
0,0
-0,1
Grocery carrier bags 
PRO
DIS
USE
DIS EOL
EOL
 
Figure 16. Characterized results for the climate change impact category, incineration 
end-of-life option (EOL1) expressed as kg CO2 equivalents per reference flow, for the 
carrier bags LDPEavg, LDPEs, LDPEh, LDPErec, PP, PPwov, PETrec, PETpol, BP, PAP, 
PAPb. PRO: production, DIS: distribution, USE: use; DIS EOL: end-of-life, packaging; 
EOL: end-of-life, carrier bag; NET: net result. 

Climate change, EOL1 
12
  10
w
flo

8
nce 
6
/ refere
4
eq 

2
CO
kg 

0
-2
Grocery carrier bags 
PRO
DIS
USE
DIS EOL
EOL
 
Figure 17. Characterized results for the climate change impact category, incineration 
end-of-life option (EOL1) expressed as kg CO2 equivalents per reference flow, for the 
carrier bags LDPEavg, LDPEs, LDPEh, LDPErec, PP, PPwov, PETrec, PETpol, BP, PAP, 
PAPb, COM, COTorg, COT. PRO: production, DIS: distribution, USE: use; DIS EOL: end-
of-life, packaging; EOL: end-of-life, carrier bag; NET: net result 


 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   73 

 
6.  Discussion 
6.1 
Identification of the best disposal option for each carrier 
bag 

Table 22 indicates, for each of the carrier bags in the rows, the disposal option providing the 
lowest environmental impacts, for each of the impact categories in the columns. In order to 
facilitate reading, incineration (EOL1) was associated with red colour, recycling (EOL2) was 
associated with light blue and secondary reuse as waste bin bag (EOL3) was assigned light 
green colour. 
 
Overall, EOL3 is the disposal option that provided the lowest environmental impacts for most 
of the impact categories and carrier bag options. As observed in the contribution analysis for 
each of the carrier bags, this is due to the fact that reuse as waste bin bag before incineration 
allowed avoiding production and disposal of an LDPE carrier bag. The difference between 
EOL1 results and EOL3 results was larger (and EOL3 comparatively more beneficial) when 
the weight of the carrier bag was comparable to the weight of the LDPE waste bin bag, as in 
the case of LDPE carrier bags (LDPEs, LDPEh, LDPErec), biopolymer bags (BP) and paper 
bags (PAP, PAPb). For heavier carrier bags, and especially for the cotton (COTorg, COT) and 
the composite (COM) bags, the difference between EOL1 and EOL3 result was smaller. EOL3 
thus resulted being the overall best disposal option, provided that the reused carrier bag can 
fulfil the waste bin bag function.  
 
The results shown in the table also highlight that for heavier plastic carrier bags (PP, PPwov, 
PETrec) recycling (EOL2) resulted in being the most favourable disposal option in some im-
pact categories, especially resource depletion and climate change. Therefore, collecting the 
waste bin bags within the recyclables waste stream might be a viable option for this type of 
carrier bags. The results for the ozone depletion, human toxicity, non-cancer effects and 
freshwater eutrophication impact categories showed a consistent preference for the EOL1 
disposal scenario, due to the avoided environmental impacts connected to electricity and heat 
production that are avoided recovering energy within the incineration process. 
74   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 22. Disposal options providing the lowest environmental impacts for each of the 
carrier bags in the rows and each of the impact categories in the columns. The colour 
scale refers to the disposal option: red was assigned to incineration (EOL1), blue to 
recycling (EOL2), and green to secondary reuse as a waste bin bag (EOL3). Please refer 
to the abbreviations for the acronyms for carrier bags scenarios and impact categories.  

 
Sce-
HT
RD 
Wa-
nario  
CC 
OD 
HTC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD 
NC 
fos 
ter 
name 
LDPE
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
avg 















LDPE
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
















LDPE
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
















LDPE
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
rec 















EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
PP 















PPwo
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
















PETr
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
ec 















PET-
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
pol 















EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
BP 















EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
PAP 















EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
PAPb 















CO-
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
Torg 















EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
COT 















EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
EOL 
COM 















 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   75 

 
6.2 
Which carrier bag provides the lowest environmental 
impact to fulfil the function? 

Table 23 provides the hierarchy of the characterized results between all carrier bags and dis-
posal options. Each column provides the carrier bag and disposal option results, ordered from 
lowest impact to highest impact, for each of the impact categories indicated in the columns. 
The colour pattern was assigned in order to distinguish carrier bag types and to aid readability. 
Dark blue was assigned to LDPE, lighter blue to PP bags and so on.  
 
For climate change, the carrier bags scoring the lowest climate change impacts were un-
bleached paper, biopolymer and LDPE carrier bags. Paper and biopolymer bags provided the 
lowest scores when reused as a waste bin bag. Whether it was reused or incinerated, paper 
provided a slightly better climate change performance than LDPE carrier bags. LDPE carrier 
bags provided a preferable performance than other carrier bags for climate change when they 
were reused, secondarily when they were recycled and thirdly incinerated. Heavier carrier 
bags provided the highest climate change impacts, with polyester, PP, recycled PET, compo-
site and cotton providing increasingly higher climate change impacts. As observed in the con-
tribution analysis, a similar pattern could be identified for the impact categories of human tox-
icity, cancer effects, and resource depletion, fossil. The lowest impacts for the remaining im-
pact categories were provided by LDPE carrier bags. LDPEavg results represent an average 
LDPE carrier bag; between LDPE carrier bags LDPEh obtained the lowest impacts in most 
impact categories. The highest impacts in all impact categories were provided by organic cot-
ton. 
 
Overall, light carrier bags such as LDPE, paper and biopolymer were the carrier bag alterna-
tives that provided the lowest environmental impacts in order to provide for the function ex-
pressed in the functional unit of this LCA. Heavier multiple-use carrier bags such as composite 
and cotton bags obtain the highest environmental impacts across all impact categories. For 
this reason, it is useful to determine the number of necessary reuse times to lower the envi-
ronmental impacts related to their production to values comparable to lighter carrier bags. 
 
76   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 23. Hierarchy of the results obtained by each carrier bag alternative for each of 
the disposal options, subdivided by impact categories. The cells in the table represent 
the result scores, sorted from lowest (lowest environmental impacts per impact catego-
ry, top) to highest (highest environmental impacts per impact category, bottom). The 
colour scale was assigned to facilitate distinguishing between carrier bag types. 

HTN
RD 
Wa-
CC 
OD 
HTC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD 

fos 
ter 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
PAP 
PAP 
COM 
LDPEs 
PPwov 
PAP 
PPwov  LDPEh 
avg 
avg 
avg 
avg 
avg 
rec 
avg 
EOL3 
EOL3 
EOL1 
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
EOL1 
EOL3 
EOL3 
EOL2 
EOL2 
EOL1 
EOL3 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
BP 
LDPEh 
PP 
LDPEh  LDPEh 
LDPEh  LDPEh  LDPEs 
LDPEh 
BP 
avg 
rec 
avg 
avg 
avg 
EOL3 
EOL1 
EOL1 
EOL3 
EOL3 
EOL2 
EOL2 
EOL1 
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
LDPE 
LDPE 
LDPE 
PAP 
PAPb  PPwov  LDPEs  LDPEs  LDPEh  LDPEs  LDPEs  LDPEh  LDPEh 
PAP 
LDPEs 
avg 
avg 
avg 
EOL1 
EOL3 
EOL1 
EOL3 
EOL3 
EOL3 
EOL2 
EOL2 
EOL1 
EOL3 
EOL1 
EOL3 
EOL3 
EOL1 
EOL1 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPEh 
LDPEs 
PP 
LDPEs 
LDPEh 
avg 
avg 
rec 
avg 
avg 
avg 
rec 
avg 
avg 
avg  
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
EOL2 
EOL1 
EOL1 
EOL1 
EOL3 
EOL2 
EOL1 
EOL2 
EOL3 
LDPE 
LDPE 
LDPE 
LDPEs 
LDPEs  LDPEh  LDPEh  PAPb 
PAPb  LDPEh 
LDPEs  LDPEh  LDPEh 
PP 
BP 
avg 
avg 
avg 
EOL1 
EOL1 
EOL1 
EOL1 
EOL3 
EOL2 
EOL1 
EOL3 
EOL1 
EOL3 
EOL3 
EOL1 
EOL2 
EOL1 
EOL1 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
BP 
LDPEs  LDPEh  PETrec  LDPEs  LDPEs  PPwov  PPwov 
LDPEs  PPwov 
rec 
rec 
rec 
avg 
rec 
EOL1 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL3 
EOL2 
EOL3 
EOL1 
EOL2 
EOL3 
EOL3 
EOL2 
EOL3 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPEh 
PAP 
LDPEh 
PP 
LDPEs  LDPEh 
BP 
PAPb  LDPEh 
rec 
rec 
rec 
avg 
avg 
avg 
EOL3 
EOL1 
EOL1 
EOL3 
EOL1 
EOL3 
EOL3 
EOL3 
EOL2 
EOL1 
EOL3 
EOL3 
EOL3 
EOL2 
EOL1 
LDPE-
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPEs 
LDPEh 
PETpol  PETpol 
PAP 
PAPb 
BP 
LDPEh  LDPEh 
rec 
avg 
avg 
rec 
avg 
avg 
EOL3 
EOL2 
EOL3 
EOL2 
EOL2 
EOL3 
EOL3 
EOL1 
EOL1 
EOL3 
EOL1 
EOL2 
EOL1 
EOL3 
EOL1 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPEh 
PAPb  PETpol 
BP 
PAP 
PETpol 
PETpol  LDPEs 
BP 
LDPEs 
avg 
rec 
avg 
avg 
rec 
EOL2 
EOL1 
EOL1 
EOL3 
EOL2 
EOL2 
EOL3 
EOL1 
EOL3 
EOL3 
EOL2 
EOL1 
EOL2 
EOL2 
EOL1 
PAP 
LDPEh  LDPEh  PAPb  LDPEh  LDPEh 
PAP 
PP 
PAPb  LDPEh  PETrec  LDPEh  LDPEs 
PP 
LDPEs 
EOL2 
EOL2 
EOL1 
EOL1 
EOL2 
EOL2 
EOL3 
EOL2 
EOL2 
EOL2 
EOL3 
EOL2 
EOL2 
EOL1 
EOL1 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPEs  LDPEs 
BP 
LDPEs  LDPEs  PETrec  LDPEh 
LDPEs 
LDPEh  LDPEh 
avg 
rec 
avg 
rec 
avg 
EOL2 
EOL3 
EOL1 
EOL2 
EOL2 
EOL3 
EOL3 
EOL2 
EOL1 
EOL2 
EOL1 
EOL1 
EOL1 
EOL3 
EOL2 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
PAPb 
PAP 
PAP 
PAPb 
LDPEs  PPwov 
LDPEh  PAPb 
PAP 
LDPEs 
rec 
rec 
avg 
rec 
rec 
EOL3 
EOL2 
EOL1 
EOL3 
EOL3 
EOL2 
EOL1 
EOL1 
EOL2 
EOL1 
EOL2 
EOL2 
EOL1 
EOL2 
EOL2 
LDPE 
LDPE 
LDPEs 
PAP 
PAPb 
COT 
PPwov 
BP 
LDPEh 
PP 
PAPb 
COM 
BP 
LDPEs  LDPEh 
rec 
rec 
EOL2 
EOL1 
EOL2 
EOL1 
EOL3 
EOL3 
EOL1 
EOL2 
EOL1 
EOL3 
EOL1 
EOL2 
EOL2 
EOL3 
EOL3 
COT 
LDPE 
LDPE 
LDPEh 
PAP 
LDPEs 
PETpol 
COM  PETrec  PETrec  PAPb  LDPEs  LDPEs  LDPEs 
LDPEs 
org 
rec 
rec 
EOL1 
EOL3 
EOL2 
EOL3 
EOL3 
EOL2 
EOL2 
EOL3 
EOL1 
EOL2 
EOL1 
EOL2 
EOL1 
EOL2 
EOL3 
LDPE 
LDPE 
BP 
PPwov 
PPwov  PAPb  LDPEs  PETpol  PETpol  PAPb 
PAP 
PETpol  PAPb  PPwov  PAPb 
rec 
avg 
EOL1 
EOL3 
EOL1 
EOL1 
EOL1 
EOL3 
EOL1 
EOL2 
EOL3 
EOL3 
EOL3 
EOL2 
EOL3 
EOL3 
EOL3 
LDPE 
LDPE 
LDPE 
LDPE 
LDPE 
LDPEs 
BP 
BP 
LDPEh  PETpol 
BP 
PETpol 
PPwov  PPwov 
PAPb 
avg 
rec 
rec 
rec 
rec 
EOL1 
EOL3 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL1 
EOL1 
EOL1 
EOL1 
EOL1 
EOL2 
EOL1 
LDPE 
PAP 
LDPEs  LDPEs 
PP 
PETpol 
BP 
PAP 
PP 
PPwov  PETpol 
PAP 
BP 
PP 
PAP 
rec 
EOL2 
EOL1 
EOL3 
EOL3 
EOL3 
EOL1 
EOL3 
EOL1 
EOL3 
EOL1 
EOL3 
EOL1 
EOL2 
EOL3 
EOL2 
LDPE 
PAPb  PETpol  PETpol 
BP 
BP 
PETpol 
PAP 
LDPEh 
PAP 
PETpol 
PAP 
PETpol  PETpol 
PAP 
rec 
EOL1 
EOL1 
EOL2 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL2 
EOL1 
EOL1 
EOL3 
EOL1 
EOL2 
LDPE 
LDPE 
PETpol  PETpol  PETpol 
PAP 
PP 
PETpol 
PPwov 
BP 
PP 
PPwov  PAPb 
BP 
PETpol 
rec 
rec 
EOL3 
EOL3 
EOL3 
EOL3 
EOL1 
EOL2 
EOL3 
EOL1 
EOL1 
EOL1 
EOL2 
EOL3 
EOL2 
EOL1 
EOL1 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   77 

 
Table 23. (continued) Hierarchy of the results obtained by each carrier bag alternative 
for each of the disposal options, subdivided by impact categories. The cells in the table 
represent the result scores, sorted from lowest (lowest environmental impacts per im-
pact category, top) to highest (highest environmental impacts per impact category, 
bottom). The colour scale was assigned to facilitate distinguishing between carrier bag 
types.  

CC 
OD 
HTC 
HTNC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD fos 
RD 
Water 
LDPE 
PETpol  PAPb  PPwov  PETpol  PETpol  PAPb 
PAPb 
PAPb 
PAPb 
PP 
COT 
PETpol  PAPb  PETpol 
rec 
EOL2 
EOL1 
EOL1 
EOL3 
EOL2 
EOL2 
EOL1 
EOL3 
EOL1 
EOL3 
EOL3 
EOL2 
EOL3 
EOL3 
EOL2 
LDPE 
PAPb 
PAPb 
BP 
BP 
PAP 
COT 
LDPEs  PETrec  PETpol  PAPb  PPwov  PAPb 
PAPb  PETpol 
rec 
EOL2 
EOL3 
EOL1 
EOL1 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL3 
EOL1 
EOL2 
EOL1 
EOL3 
LDPE 
LDPE 
PETpol 
PP 
PAPb 
PAP 
PAP 
PP 
COM  PETpol 
PP 
PAP 
PETpol  PAPb  PPwov 
rec 
avg 
EOL2 
EOL3 
EOL3 
EOL3 
EOL1 
EOL3 
EOL1 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL3 
EOL1 
EOL2 
LDPE 
LDPE 
PETpol  PAPb 
PAP 
PPwov  LDPEh  PETrec 
COT 
PPwov  PETrec  PPwov  PAPb 
BP 
PPwov 
rec 
avg 
EOL1 
EOL2 
EOL1 
EOL3 
EOL2 
EOL3 
EOL1 
EOL2 
EOL1 
EOL1 
EOL2 
EOL1 
EOL1 
EOL3 
EOL2 
LDPE 
PPwov  PPwov  PETpol  LDPEh  PPwov  PPwov  LDPEs 
BP 
BP 
BP 
PP 
PPwov  PETpol 
PP 
avg 
EOL2 
EOL1 
EOL1 
EOL2 
EOL2 
EOL1 
EOL2 
EOL3 
EOL1 
EOL1 
EOL3 
EOL2 
EOL2 
EOL3 
EOL3 
LDPE 
COT 
PPwov  PPwov 
PP 
PPwov 
PP 
PAP 
PPwov 
LDPEh 
BP 
PAP 
PPwov  PETpol 
PP 
rec 
org 
EOL3 
EOL3 
EOL1 
EOL3 
EOL2 
EOL2 
EOL1 
EOL3 
EOL3 
EOL2 
EOL3 
EOL3 
EOL1 
EOL1 
EOL3 
LDPE 
PP 
PP 
LDPEs 
PAP 
PP 
PP 
PETpol  LDPEs 
PAP 
COM 
PP 
PP 
PETpol  PPwov 
rec 
EOL2 
EOL1 
EOL2 
EOL2 
EOL3 
EOL1 
EOL1 
EOL3 
EOL1 
EOL1 
EOL1 
EOL2 
EOL1 
EOL2 
EOL2 
LDPE 
PPwov 
PP 
PETrec  PETrec 
PP 
PETrec 
PAP 
PAPb 
PAP 
COT 
PETpol  PPwov  PETrec 
PP 
rec 
EOL1 
EOL3 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL3 
EOL3 
EOL1 
EOL2 
EOL1 
EOL2 
EOL2 
EOL1 
LDPE 
COT 
PP 
PETrec  PPwov 
PP 
PETrec  PPwov 
PPwov 
BP 
PAP 
PPwov 
PP 
PETrec  PETrec 
rec 
org 
EOL3 
EOL1 
EOL2 
EOL3 
EOL1 
EOL2 
EOL1 
EOL3 
EOL2 
EOL2 
EOL3 
EOL3 
EOL2 
EOL2 
EOL1 
LDPE 
LDPE 
PP 
PETrec 
PP 
PAPb  PETrec 
PAP 
PP 
PP 
PAP 
PP 
PP 
PETrec  PETrec 
rec 
rec 
EOL1 
EOL3 
EOL2 
EOL3 
EOL3 
EOL2 
EOL1 
EOL2 
EOL2 
EOL2 
EOL1 
EOL1 
EOL3 
EOL2 
EOL3 
COT 
COT 
LDPE 
PETrec  PPwov  PETrec  PAPb 
PAPb  PETrec 
PAPb 
PETrec 
PETrec  PETrec  COM  PETrec 
org 
org 
avg 
EOL2 
EOL2 
EOL2 
EOL2 
EOL1 
EOL1 
EOL1 
EOL2 
EOL3 
EOL3 
EOL3 
EOL1 
EOL3 
EOL1 
EOL2 
PETrec 
PP 
PETrec  PETpol  PETrec 
PP 
PETpol 
BP 
PETpol  PETrec  LDPEh  PETrec  PETrec  COM 
PAPb 
EOL3 
EOL2 
EOL3 
EOL2 
EOL2 
EOL2 
EOL2 
EOL1 
EOL3 
EOL1 
EOL2 
EOL1 
EOL2 
EOL1 
EOL2 
PETrec  PETrec  PETrec  COM 
PAPb  PETrec  PAPb  PETrec 
PAP 
PETrec  LDPEs  PETrec  PETrec 
PAP 
PAP 
EOL1 
EOL2 
EOL1 
EOL3 
EOL2 
EOL2 
EOL2 
EOL1 
EOL3 
EOL3 
EOL2 
EOL2 
EOL1 
EOL3 
EOL2 
COM 
COM 
COM 
PAP 
COM 
COM 
PPwov 
COM 
PPwov 
COM 
PAPb 
COM 
COM 
PAP 
COM 
EOL3 
EOL1 
EOL3 
EOL2 
EOL3 
EOL3 
EOL2 
EOL3 
EOL3 
EOL1 
EOL2 
EOL3 
EOL3 
EOL2 
EOL3 
LDPE 
COM 
COM 
COM 
PPwov 
COM 
COM 
PP 
COT 
PP 
COM 
COM 
COM 
PAP 
COM 
rec 
EOL1 
EOL3 
EOL1 
EOL2 
EOL1 
EOL1 
EOL2 
EOL3 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL2 
COT 
COT 
COT 
COT 
PP 
COT 
COT 
PETrec 
PETrec 
COT 
PETpol 
COT 
COT 
COT 
COT 
org 
EOL3 
EOL1 
EOL3 
EOL2 
EOL3 
EOL3 
EOL2 
EOL3 
EOL1 
EOL2 
EOL3 
EOL3 
EOL3 
EOL3 
EOL3 
COT 
COT 
COT 
COT 
COT 
COT 
COM 
COM 
COM 
COT 
PPwov 
COT 
COT 
COT 
COT 
EOL1 
EOL3 
EOL1 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL3 
EOL3 
EOL2 
EOL1 
EOL1 
EOL1 
EOL1 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
PETrec  COTorg  COTorg  COT 
COT 
COT 
PP 
org 
org 
org 
org 
org 
org 
org 
org 
EOL2 
EOL3 
EOL3 
EOL1 
EOL1 
EOL3 
EOL2 
EOL3 
EOL1 
EOL3 
EOL1 
EOL3 
EOL3 
EOL3 
EOL3 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
COT 
PETrec 
org 
org 
org 
org 
org 
org 
org 
org 
org 
org 
org 
org 
org 
org 
EOL2 
EOL1 
EOL3 
EOL1 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
EOL3 
EOL3 
EOL1 
EOL1 
EOL1 
EOL1 
 
 
78   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
6.3 
How many times should a carrier bag be reused? 
This Section provides the calculated number of primary reuse times for each carrier bag type, 
as indicated in Section 3. The number of reuse times provided in Table 24 indicates how many 
times the carrier bag alternatives in the rows should be reused in order to provide the same 
environmental performance of the reference LDPE carrier bag (LDPEavg), associated with 
EOL3 as a disposal option. The number of reuse times for each carrier bag alternative was 
calculated for each disposal option: EOL1, EOL2, and EOL3 
 
The results are provided for the climate change impact category, as well as across impact 
categories. The result score across all impact categories was obtained by calculating the 
number of primary reuse times necessary for each impact category, and identifying the maxi-
mum score across all impact categories. This maximum score represents the maximum num-
ber of reuse times that would be required to obtain the same environmental performance of 
the reference LDPE carrier bag considering all impact categories. Results for each impact 
category, minimum-maximum ranges between number of reuse times and average number of 
reuse times are provided in Appendix C. 
 
Zero values are shown where LDPEavg, EOL3 is compared to itself. Values lower than zero 
corresponds to carrier bag options that already provide a better environmental performance 
than the carrier bag option to which they are compared. Values higher than zero indicate how 
many times the corresponding carrier bags in the rows should be reused before being dis-
posed of (with its corresponding end-of-life scenario) in order to provide the environmental 
performance of LDPEavg, EOL3. 
 
Table 24. Calculated number of primary reuse times for the carrier bags in the rows, 
associated with the disposal options in the columns, necessary to provide the same 
environmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3). Results are provided for the climate change impact category 
and across impact categories. Yellow cells highlight the most preferable disposal op-
tion. Results for COTorg, COT and COM have been rounded. 

LDPEavg, EOL3 
 
Climate change 
All impact categories 
 
EOL1 
EOL2 
EOL3 
EOL1 
EOL2 
EOL3 
 LDPEavg 
0.5 
0.1 
0.0 
1.2 
5.0 
0.0 
LDPEs 
1.3 
0.7 
0.3 
2.3 
7.8 
0.5 
LDPEh 
0.9 
0.4 
0.3 
1.7 
6.1 
0.3 
LDPErec 
2.2 
1.4 
1.2 
3.4 
11.7 
1.6 
PP 
8.0 
6.0 
7.3 
38 
52 
37 
PPwov 
6.8 
5.0 
5.9 
33 
45 
32 
PETrec 
9.6 
8.2 
8.6 
95 
84 
96 
PETpol 
2.6 
1.9 
1.9 
35 
28 
35 
BP 
0.2 

-0.8 
41 

42 
PAP 
-0.2 
0.5 
-1.3 
42 
77 
43 
PAPB 
1.5 
2.2 
0.6 
30 
72 
43 
COTorg 
150 

149 
20000 

20000 
COT 
53 

52 
7100 

7100 
COM 
23 

23 
870 

870 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   79 

 
For climate change, the LDPE carrier bag alternatives LDPEs, LDPEh, LDPErec provided a 
comparable performance to the average LDPE carrier bag, with lower number of reuse times 
obtained for the EOL3 disposal options. The results indicate that LDPEh is the carrier bag 
providing the best climate change performance, since this carrier bag type is associated to the 
lowest number of reuse times for all end-of-life options. In general, LDPE carrier bags should 
be reused at least one time before being used as a waste bin bag. 
 
Heavier fossil-carbon based bags provided the lowest number of reuse times for the EOL2 
disposal options. The results indicate that these types of carrier bags should be reused 5 – 10 
times before being disposed, with exception for the polyester bag, whose preferable disposal 
option was EOL3 and which scored a needed reuse of 2 times. 
 
Unbleached paper and biopolymer bags scored negative values, indicating that the climate 
change impact associated with these bags is already lower than the climate change impact 
associated with the average LDPE carrier bag. The negative value indicates that for these 
types of carrier bags, reuse before disposal would not even be necessary to provide a better 
climate change result. Moreover, the results indicate that paper and biopolymer are a better 
option than LDPE with respect to climate change impacts. Bleached paper should be reused 
for 2 times, due to the higher environmental costs related to its production. 
 
The absolute highest number of reuse times for the climate change impact category was ob-
tained for composite and cotton carrier bags. In particular, conventional cotton carrier bags 
should be reused at least 50 times before being disposed of; organic cotton carrier bags 
should be reused 150 times based on their environmental production cost. This calculated 
number of primary reuse times for cotton bags complies with results of previous studies. For 
example, Edwards and Fry (2011) calculated a number of around 130 reuse times required for 
cotton carrier bags to provide similar climate change impacts in comparison to HDPE carrier 
bags, which were chosen as reference in that study. 
 
When all impact categories were taken into consideration, Table 24 provides the highest num-
ber of reuse times across all the considered environmental indicators. The results for each 
impact category are available in Appendix C. LDPE carrier bags provided the absolute best 
environmental performance. With reuse as waste bin bag as the considered as disposal op-
tion, it suffices to reuse LDPE carrier bags one time before reusing them as waste bin bag. 
Heavier PP carrier bags and polyester bags would need to be reused 30 – 40 times. Paper 
and biopolymer carrier bags should be reused up to 40 times in order to provide for a similar 
environmental performance, mostly due to the impacts in the freshwater eutrophication impact 
category. In a number of categories bleached paper was found to have a lower impact than 
unbleached paper. The reason for this difference was found to be due to a lower data quality 
for bleached paper that did not include as detailed a dataset. Since the difference in produc-
tion of bleached versus unbleached kraft paper is only the bleaching step, we did not find it 
realistic that unbleached paper could have higher impacts. For these categories we therefore 
assume that the bleached number must be the same or higher than the unbleached number.  
In order to provide a comparable performance to LDPE in all impact categories, the number of 
reuse times for cotton and composite bags increased to thousands of times. 
 
For LDPE carrier bags, the number of reuse times was rather uniform across impact catego-
ries. For PP and PET bags, some impact categories presented higher reuse times than others, 
especially ozone depletion, terrestrial eutrophication, freshwater eutrophication and water use. 
For these indicators, the results of PP and PET carrier bags were considerably higher (such as 
one order of magnitude) than the results obtained by the LDPE carrier bag. This occurred 
because for PP and PET carrier bags the higher environmental cost of production is not com-
pensated by the energy or material recovered – while for the lighter LDPE carrier bag the 
environmental production costs are lower. The same observations can be made for BP and 
80   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
PAP carrier bags, which obtained considerably higher numbers of reuse times for terrestrial 
and freshwater eutrophication impact categories. Lastly, the high number of reuse times 
scored by cotton and composite bags is due only to the ozone depletion impact category, 
where cotton production provides considerably large impacts. 
 
It is important to remark that, even if LDPE scored a low (to zero) number of reuse times, this 
is due to the fact that it was compared to a reference LDPE carrier bag. Reuse of each type of 
carrier bags, even LDPE, should be carried out as many times as possible before disposal. In 
the case of heavier carrier bags, customers of Danish supermarkets should be informed on the 
optimal number of reuse times of multiple-use carrier bags offered as alternatives for the 
LDPE carrier. 
 
Finally, it is important to consider that the avoided reference bag can in practice also be re-
used, and if this is the case then the reuse number calculated above would proportionally be 
as many times higher as it was reused. The resulting reuse numbers calculated in this study 
should therefore be seen as a minimum reuse number that could be higher. 
 
All results presented above are linked to specific types of bags used on the market today. If 
the bags were designed differently with larger volume to carrying weight ratio, from recycled 
material instead of primary material where only one type material is presented, or some other 
type of improvement the results would come out better than the standard version of the same 
bag.  
 
This study focused on identifying the number of reuse times based on the environmental per-
formance of the carrier bags, rather than considering the actual realistic lifetime for different 
bag types considering their material type, production, and functionality. The results obtained 
on the minimum number of reuse times are intended to raise the discussion among the stake-
holders on the effective expected lifetime of each carrier bag. While the calculated number of 
reuse times might be compliant with the functional lifetime of PP, PET and polyester carrier 
bags, it might surpass the lifetime of bleached paper, composite and cotton carriers, especially 
considering all environmental indicators.  
 
6.4 
Influence on data and assumptions on the results 
Data availability was found to be rather low. The number of reviewed LCA reports and data 
available in the literature was limited. In particular, data on the manufacturing part for the car-
rier bags (energy and ancillary materials requirements) was rather scarce in the majority of the 
LCA reports consulted for this project. As far as the production of the main material of the 
carrier bags is concerned, more datasets were available for LDPE, and fewer datasets were 
available for other plastic types, such as PP, polyester, biopolymers and textiles. This did not 
allow as much preliminary testing on the datasets employed as it was possible for virgin LDPE. 
Higher data quality and availability would allow LCA practitioners to explore better alternative 
materials for the production of carrier bags, especially data on recycled polymers and their 
performance during manufacture and recycling. 
 
The physico-chemical material composition used for modelling input-specific emissions in the 
EASETECH LCA model allowed retrieving generic impacts for material groups, such as plas-
tic, paper, textile. The emissions mostly contributed to impacts to atmosphere via the incinera-
tion process, especially for plastic carrier bags.  
 
Regarding the carrier bag manufacturing process, we observed that most of the production 
impacts were ascribable to the production of the carrier bag material (Tables 13 – 21). The 
material production process contributed less only in the LDPE and PP carrier bags manufac-
turing, but described most of the impacts from the manufacturing phase for most of the re-
maining carrier bags, as observed in previous LCA studies. Carrying out a streamlined LCA 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   81 

 
considering only the production of the carrier bags’ main material would have underestimated 
the impacts for LDPE and PP. However, even if for LDPE carrier bags most of the production 
emissions arise from manufacturing phase (energy and ancillary material requirements), these 
carrier bags are still providing the overall best environmental performance. In general, manu-
facturing data quality was mostly sensitive when bags were composed of light material or 
material with low associated impacts. 
For the modelling of the virgin LDPE waste bin bag we employed a dataset representing lower 
quality LDPE than the one used for modelling LDPE carrier bags. The use of this dataset re-
sulted in lower savings from avoiding production and disposal of a waste bin bag. If we had 
modelled the waste bin bag as the LDPE carrier bags, savings from replacing a waste bin bag 
would have been even higher. Still, even using a conservative assumption for the production 
data of the waste bin bag, reuse as waste bin bag was one of the most preferable end-of-life 
options, especially for low weight and non-fossil carbon carrier bags (LDPE, paper, biopoly-
mer). If the waste bin bag was made of recycled polymer material, we expect that the impacts 
connected to its production would have been slightly lower. In this case, the carrier bag sce-
narios that would be mostly affected would be the ones associated with the lightest carrier bag 
weight: LDPE, paper, biopolymer. These carrier bags would present slightly lower benefits 
from EOL3, but still result among the carrier bags with the overall lowest associated impacts 
for EOL1. 
 
The large transportation distances were considered conservative. Although distribution did not 
largely contribute to the impacts, knowing the exact location of the facilities, especially the 
recycling facilities assumed to be in Europe, would probably lower the impacts connected to 
transportation. Lower transportation distances are especially expected to slightly reduce the 
impacts of the EOL2 scenarios.  
 
We did not find any available specific end-of-life data for recycled polymers, therefore we 
could not apply specific higher losses during material production and recovery. If higher losses 
would occur during manufacturing and recovery, there would be higher impacts related to the 
production of the carrier bag with recycled material, as well as lower revenues from the recy-
cling process. This would affect the result for EOL2 as preferable waste management option 
for PETrec. 
 
Regarding the critical assumptions highlighted in Section 3, rounding to two bags when the 
functionality expressed in the functional unit was not provided resulted in larger impacts for 
bags that did not comply with the functional unit. In particular, the organic cotton bag provided 
considerably high impacts. 
 
Moreover, using virgin LDPE to model recycled LDPE resulted in higher impacts from the 
production phase of the LDPErec carrier bag, but also to higher revenues from recycling. In-
deed, the recycled material is going to substitute production of virgin material instead of recy-
cled polymer. 
The assumption of lower yield used to model the production of organic cotton increased the 
impacts connected to its production, as can be seen from the contribution analyses in Table 19 
and 20. However, the use of two bags in order to comply for the functional unit for organic 
cotton bags influenced the results to a larger extent. For example, comparing the climate 
change score for one organic cotton bag (5.4 kg CO2-eq/bag, Table 19) and for one conven-
tional cotton bag (3.9 kg CO2-eq/bag, Table 20), we obtain the following: 
 5.43.910038% 
 
3.9
82   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
5.423.9100 %
77
1
 
 
3.9
Where 38 % represents the increase in climate change impact with respect to conventional 
cotton by using a lower yield for organic cotton, and 177 % represents the Increase in climate 
change impact with respect to conventional cotton by using 2 bags for organic cotton. 38 % is 
higher than the assumed yield (-30 %) because organic cotton bags presented a slightly larger 
weight with respect to conventional cotton bags.  
 
If we had included the additional data on the conventional cotton bag pointed out by the pro-
ject partners after the first iteration of the report (please see Section 2), the average weight 
associated to the conventional cotton bag would have lowered to 194.6 grams from the initial 
232 grams (see Table 2), and the volume would have been 28.3 litres. The number of bags 
required to fulfil the functional unit would have still been 1, but the lower weight would have 
lowered the impacts (for example, we calculated 16 % lower impacts for climate change) and 
lowered the number of reuse times by roughly 10 times. These considerations about volume of 
the organic cotton bag and the weight of the conventional cotton bag will be expanded further 
in a dedicated part about design considerations (please see Section 7). 
 
As far as the choice for the marginal energy technologies is concerned, using a non-future 
marginal energy would have entailed having coal in the energy mix, and would have provided 
higher savings from energy recovery in the incineration process, especially for climate change. 
 
Considering recycling feasible for biopolymer and textile carrier bags would mean allowing for 
the recovery of these materials through separate collection and re-processing, therefore ulti-
mately lowering the impacts connected to the production of the carrier bags. However, specific 
attention should be required to the substituted materials from such recovery processes, espe-
cially for cotton, which is unlikely to substitute production of primary cotton. 
 
Lastly, in case the carrier bags cannot fulfil the functionality of waste bin bags, EOL3 should 
not be considered as a viable option. 
 
The choice of reference flow, the use of virgin LDPE data for LDPErec and reuse as waste bin 
bag only for LDPE carrier bags were tested in a sensitivity analysis, which is provided in Sec-
tion 7. 
 
 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   83 

 
7.  Sensitivity analysis: critical 
assumptions 
This Section evaluates whether and in what measure a selection of the modelling choices and 
critical assumptions identified in the LCA methodology Section (Section 3) influence the re-
sults. The results for the most preferable disposal option and carrier bag, as well as number of 
primary reuse times, were re-calculated according to alternative modelling choices.  
 
7.1 
Choice of reference flow: rounding 
The choice of calculating the reference flow by rounding to two carrier bags when one was not 
sufficient to comply with the functional unit was tested by calculating the required number of 
bags with fractions. This sensitivity analysis is based on the fact that the rounding to two bags 
might provide a large overcapacity with respect to the functional unit. We also wanted to test 
the effect on the results on “optimizing” the carrying capacity of the bags instead of just as-
suming that another bag of the same type would be bought by the customers.  
 
The reference flow of this sensitivity analysis step was re-calculated for the bags that did not 
comply with the functional unit and that required two bags (as shown in Table 3): LDPEs, 
LDPErec, BP, PAP, PAPb and COTorg. The number of substituted waste bin bags was re-
calculated as well (Table 25). The effect of using fractions instead of rounding to another bag 
has also lowered the number of substituted waste bin bags for the corresponding carrier bags. 
For the bags that could provide more volume and weight holding capacity than the average 
LDPE carrier bag (for example woven PP and conventional cotton) one bag was considered 
instead of the fraction, and the number of substituted waste bin bags was left unchanged. 
 
The reference flow change did not influence the preferred disposal option for each carrier bag. 
The hierarchy of the most preferable carrier bag option for each impact category changed only 
slightly. Paper obtained comparatively better results in human toxicity, cancer effects, and in 
resource depletion, fossil, than in the present study, due to the lower environmental costs 
related to the production of the carrier bag. The emissions related to production were larger 
when the number of bags per reference flow was rounded to two. In general, LDPE carrier 
bags still resulted as the carrier alternative providing the overall best performance in the high-
est number of impact categories, with LDPEs now providing the overall best performance 
within virgin LDPE carrier bags. 
 
The reference flow change for some of the carrier bags mostly influenced their calculated 
number of reuse times. Table 26 shows that LDPEs and COTorg were the carrier bags that 
considerably lowered the number of reuse times. In particular, when the reference flow was 
not rounded, organic cotton presented less than half of the calculated number of reuse times 
than what previously calculated, both for climate change and for all impact categories. The 
results highlight the importance of the design of the bags, which is going to be discussed fur-
ther in a dedicated paragraph. 
 
LDPEs, BP and PAP provided a negative number of reuse times, which signifies that these 
carrier bag types provided a better environmental performance for climate change than the 
average LDPE carrier bag. Across all impact categories, LDPE carrier bags provided a similar 
performance, while heavier fossil carbon-based carrier bags, paper and biopolymer, presented 
a generally higher number of calculated reuse times. Calculated number of reuse times for BP 
and PAP was halved when considered across all impact categories. 
 
84   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 25. Reference flow and number of substituted bin bags used for the scenario 
analysis.  

Weight holding 
Reference flow  Number of sub-
Scenario 
Volume 
Reference flow 
Capacity 
(number of bags 
stituted bin 
name 
enough? 
calculation 
enough? 
needed) 
bags 
LDPEavg 
Yes 
Yes 
Not changed 
1.0 
1.0 
𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑎𝑣𝑔 𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑎𝑣𝑔
LDPEs 
No 
No 
𝑀𝑎𝑥 (
,

𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑠
𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑠
1.2 
1.0 
LDPEh 
Yes 
Yes 
Not changed 
1.0 
1.1 
𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑎𝑣𝑔 𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑎𝑣𝑔
LDPErec 
No 
No 
𝑀𝑎𝑥 (
,

𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑟𝑒𝑐 𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑟𝑒𝑐
1.1 
1.1 
PP 
Yes 
Yes 
Not changed 
1.0 
1.3 
PPwov 
Yes 
Yes 
Not changed 
1.0 
1.6 
PETrec 
Yes 
Yes 
Not changed 
1.0 
1.9 
PETpol 
Yes 
Yes 
Not changed 
1.0 
1.4 
𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑎𝑣𝑔 𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑎𝑣𝑔
BP 
No 
No* 
𝑀𝑎𝑥 (
,

𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑟𝑒𝑐 𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑟𝑒𝑐
1.0 
1.0 
𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑎𝑣𝑔
PAP 
Yes 
No* 
 
𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝑃𝐴𝑃
1.0 
1.0 
𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝐿𝐷𝑃𝐸𝑎𝑣𝑔
PAPb 
Yes 
No* 
 
𝑊𝑒𝑖𝑔ℎ𝑡 ℎ𝑜𝑙𝑑. 𝑃𝐴𝑃𝑏
1.0 
1.0 
𝑉𝑜𝑙𝑢𝑚𝑒 𝐿𝐷𝑃𝐸𝑎𝑣𝑔
COTorg 
No 
Yes 
 
𝑉𝑜𝑙𝑢𝑚𝑒 𝐶𝑂𝑇𝑜𝑟𝑔
1.1 
1.0 
COT 
Yes 
Yes 
Not changed 
1.0 
1.2 
COM 
Yes 
Yes 
Not changed 
1.0 
1.4 
* In this sensitivity analysis the weight holding capacity of 12.0 kg of paper and biopolymer bags was considered effec-
tive.  
Table 26. Calculated number of primary reuse times for each carrier bag in the rows in 
comparison to LDPEavg, EOL3, for the reference flow in Table 25. Results are provided 
for the climate change impact category and across impact categories. Results for CO-
Torg, COT and COM have been rounded. Results in brackets report the previously cal-
culated results in Table 24 for the carrier bags with a changed reference flow. 

LDPEavg, EOL3 
 
Climate change 
All impact categories 
 
EOL1 
EOL2 
EOL3 
EOL1 
EOL2 
EOL3 
 LDPEs 
0.3 (0.5) 
0.0 (0.1) 
-0.2 (0.00) 
0.9 (1.2) 
4.1 (5.0) 
0.2 (0.0) 
LDPEh 
0.9 
0.4 
0.3 
1.7 
6.1 
0.3 
LDPErec 
0.8 (2.2) 
0.3 (1.4) 
0.2 (1.2) 
1.7 (1.7) 
6.2 (6.1) 
0.5 (0.3) 
PP 
8.0 
6.0 
7.3 
38 
52 
37 
PPwov 
6.8 
5.0 
5.9 
33 
45 
32 
PETrec 
9.6 
8.2 
8.6 
95 
84 
96 
PETpol 
2.6 
1.9 
1.9 
35 
28 
35 
BP 
-0.4 (0.2) 

-0.9 (-0.8) 
21 (41) 

22 (42) 
PAP 
-0.6 (-0.2) 
-0.3 (0.5) 
-1.1 (-1.3) 
22 (42) 
38 
22 (43) 
PAPb8 
0.3 
0.6 
-0.2 
22 (42) 
38 
22 (43) 
COTorg 
84 (150) 

83 (149)  10000 (20000) 
-  10000 (20000) 
COT 
53 

52 
7100 

7100 
                                                           
8 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   85 

 
COM 
23 

23 
870 

870 
7.2 
Secondary reuse as a waste bin bag allowed only for LDPE 
carriers 

In this Section, results are presented considering that secondary reuse as a waste bin bag 
(EOL3) could be possible only for LDPE carrier bags. This modelling choice would represent 
the choice of allowing secondary reuse as a waste bin bag only for the carrier bags that can 
fully provide for the same functionality. The results for the best disposal option for each carrier 
bag are provided in Table 26. As previously discussed, reuse as waste bin bag before being 
incinerated is the best disposal option for LDPE carrier bags. For heavier plastic bags recy-
cling resulted often one of the best options, provided that the carrier bags can be effectively 
recycled. For the remaining bags, incineration was the disposal option that provided the lowest 
environmental impacts. 
 
As far as the hierarchy of results is concerned, the carrier bags providing the lowest impacts 
have only slightly changed. Incineration of paper and biopolymer carrier bags and secondary 
reuse of the LDPE carrier bags still provided the lowest climate change environmental im-
pacts. For the other impact categories, LDPE carrier bags represented the alternative with the 
overall lowest environmental impacts, as already observed. The results indicate that allowing 
secondary reuse as waste bin bag only for LDPE carrier bag provides little influence on the 
hierarchy of the most favourable carrier bag alternative for each impact category. For the 
number of reuse times, if EOL3 is not allowed for all carrier bag alternatives other than LDPE 
carrier bags, non-LDPE carrier bags have to be reused in average at least one additional time 
before being incinerated. The results correspond to Table 24 presented previously, without 
considering the EOL3 column for the non-LDPE carrier bags. 
 
 
86   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 26. Disposal options providing the lowest environmental impacts for each of the 
carrier bags in the rows and each of the impact categories in the columns. The colour 
scale refers to the disposal option: red was assigned to incineration (EOL1), blue to 
recycling (EOL2), and green to secondary reuse as a waste bin bag (EOL3). EOL3 was 
considered possible only for LDPE carrier bags. 

Scenario 
HTN
RD 
Wa-
CC 
OD 
HTC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RD 
name 

fos 
ter 
EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
LDPEavg 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
LDPEs 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
LDPEh 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
LDPErec 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
PP 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
PPwov 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
PETrec 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
PETpol 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
BP 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
PAP 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
PAPb 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
COM 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
COTorg 















EOL
EOL
EOL
EOL 
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL
EOL 
EOL
EOL 
COT 















 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   87 

 
7.3 
Recycled LDPE 
Since the dataset for recycled LDPE was missing in the Ecoinvent database, the recycled 
LDPE carrier bag was modelled modifying the virgin LDPE production dataset. As shown in 
Appendix B, for PET the recycled inventory dataset presents lower emissions than the virgin 
inventory dataset for all impact categories. In this sensitivity analysis, the virgin LDPE produc-
tion inventory of emissions used for the recycled LDPE carrier bag was lowered by 25 %. This 
signified that the environmental costs for the production of LDPE were lowered by the same 
extent for all environmental indicators, as well as the benefits from the recycling of recycled 
LDPE. 
 
The results obtained by the recycled LDPE carrier bags lowered for all impact categories, as 
shown in Table 27 below. Table 27 provides the percent variation of the newly tested LDPErec 
scenario with the results presented in Tables (10 – 12). Climate change results lowered by 12 
% for EOL1, by 18 % for EOL2, and by 8 % for EOL3. For human toxicity, cancer effects 
(HTNC), and freshwater eutrophication (FE), the Table shows positive percent variation be-
cause the original result scores were already negative numbers. The highest variations oc-
curred for human toxicity, cancer effects, particulate matter (PM), photochemical ozone for-
mation (POF), terrestrial acidification (TA), terrestrial eutrophication (TE) and marine eutrophi-
cation (ME).  
 
The preferred management option for LDPErec, which was mostly EOL3 for the different im-
pact categories, did not change. The hierarchy of the carrier bags providing the lowest perfor-
mance for each environmental indicator changed for the impact categories of particulate mat-
ter, photochemical ozone formation, terrestrial and freshwater eutrophication, where LDPErec 
provided the best performance. The results for the remaining impact categories did not 
change: virgin LDPE provided the overall best performance, along with paper and biopolymer 
for the climate change impact category. 
 
The number of reuse times was recalculated as well and it is presented in Table 28. Consider-
ing the end-of-life scenario where LDPErec provides the best performance, which is EOL3, 
The number of reuse times lowered only slightly: by 0.4 for the climate change impact catego-
ry, and by 0.5 across all impact categories. The results are more comparable to those ob-
tained for virgin LDPE carrier bags in Table 24, but are still larger because of the two bags 
required in order to provide for the functionality expressed in the functional unit. 
 
 
88   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table 27. Percent variation from the LDPErec scenario results presented in Tables 10 – 
12 obtained by lowering the virgin LDPE material production impacts by 25 %. 

CC 
OD 
HTC 
HTNC 
PM 
IR 
POF 
TA 
TE 
FE 
ME 
ET 
RDfos  RD 
Water 
 
EOL1  -12%  -7%  -10% 
2% 
-42%  -4%  -31%  -53%  -116% 
8% 
-43%  -12%  -26%  -1% 
-1% 
EOL2  -8% 
-1% 
-5% 
45% 
-11%  -2%  -17%  -18% 
-20% 
-3%  -16%  -5% 
-16%  -1% 
-1% 
EOL3  -18%  -6%  -12% 
2% 
-64%  -6%  -47%  -76%  -194%  12%  -61%  -17%  -39%  -1% 
-2% 
 
Table 28. Calculated number of primary reuse times for LDPErec carrier bag in the rows 
in comparison to LDPEavg, EOL3, for the reference flow in Table 3. Results are provid-
ed for the climate change impact category and across impact categories. The inventory 
dataset for the production of virgin LDPE was lowered by 25 %. Numbers in brackets 
are the previous results for LDPErec reported in Table 24. 

 
LDPEavg, EOL3 
Climate change 
All impact categories 
 
EOL1 
EOL2 
EOL3 
EOL1 
EOL2 
EOL3 
 LDPErec 
1.8 (2.2) 
1.2 (1.4) 
0.8 (1.2) 
2.0 (3.4) 
9.1 (11.7) 
1.1 (1.6) 
 
7.4 
Final remarks on sensitivity analysis 
The tested methodological assumptions allowed for understanding of the robustness of the 
results obtained with respect to critical assumptions taken for this LCA study. Table 29 sum-
marizes the results of the sensitivity analysis on the assumptions.  
 
The assumptions tested modified the best end-of-life option for each of the carrier bags as-
sessed only when reuse as waste bin bag was not allowed for non-LDPE carriers. In general, 
after reusing as many times as possible the carrier bag, it could be reused as waste bin bag 
before being incinerated when possible. For paper and biopolymer bags, this can occur with 
limited waste weight and by avoiding wet waste and sharp edges. For heavier carriers, such 
as PP, PET and polyester, recycling may be an option, but providing benefits only in a limited 
number of impact categories. 
 
The hierarchy of the carrier bags providing the best disposal for each of the impact categories 
considered, varied for some impact categories when lower impacts were associated to recy-
cled LDPE production. Overall, the hierarchy did not change with respect to the general con-
clusions observed in the discussion section: light carrier bags, such as LDPE, paper and bi-
opolymer, are the carrier bags providing the lowest impacts across the impact categories as-
sessed. 
 
Lastly, the number of reuse times considerably changed when the reference flow was 
changed, but mostly for the organic cotton bag. For this carrier bag type, rounding to two carri-
er bags when the volume of one bag was not enough considerably influenced the results. 
Considering a fraction of the reference flow (1.1) instead of rounding, required 45 % less cot-
ton to be produced; this considerably lowered the impacts connected to cotton production. As 
already observed in the discussion of the results, it is important to notice that the difference 
connected to the reference flow choice is larger than the assumption on the organic cotton 
yield presented in the assumptions section. The calculated number of reuse times for the or-
ganic cotton bag is however still very high. 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   89 

 
Table 29. Overview of the changes in the results induced by changes in the assump-
tions for the reference flow, allowed secondary reuse and different calculation method 
for the reuse times. 

Induced change 
Tested assumption 
Best end-of-life option for 
Hierarchy of carrier bags for each  Calculate number of primary 
each carrier bag 
impact category 
reuse times 
Yes, especially for organic 
Reference flow 
Not changed 
Not changed 
cotton: number of reuse 
times reduced by half 
EOL3 not allowed for non-LDPE 
Yes, 
Not changed 
+1 (average) 
carriers 
EOL1 instead of EOL3 
LDPErec modelled by lowering 
LDPErec best option for PM, 
LDPE production impacts by 
Not changed 
-1 for LDPErec 
POF, TE, FE 
25% 
 
7.4.1  Carrier bag design 
The results of the sensitivity analysis suggest that for the carrier bags with the highest weight 
and with the highest impacts connected to production, the ability to provide for the functionality 
expressed in the functional unit is essential. In particular, if Danish retailers want to provide a 
multiple-use carrier bag alternative to LDPE carrier bags that is made of cotton or textile-based 
composite materials, their attention should be placed on the weight of the bag and on its vol-
ume. The textile bag should preferably be of light weight and with enough volume to provide 
for the same capacity of LDPE carrier bags. The example provided in the discussion of the 
results showed that using a conventional cotton bag of a lower weight had lowered the number 
of reuse times by 10 units.  
 
All the multiple use bags (PP, PET, Cotton etc.) could carry significantly more weight than the 
reference flow, but varied highly in volume. This indicates that it is possible to design bags that 
can be high in both volume and weight. For some consumers the weight could be the limiting 
factor, but for other consumers it could for some bags mean that weight holding capacity 
would be the limiting factor. No matter the consumer preference, there is not a rational for not 
optimizing the volume per material weight. 
 
As far as the carrier bag material is concerned, organic cotton provides environmentally pref-
erable production conditions by avoiding the use of fertilizers and pesticides, but with a lower 
yield. The lower production yield translates in overall higher environmental impacts connected 
to its production, and to a higher required number of reuse times in order to “amortize” its 
environmental production costs.  
 
Regarding the material of the carrier bags, one more observation could be raised for the use of 
recycled polymers for the manufacturing of the carrier bags. If all the LDPE carrier bags had 
the same volume capacity, weight holding capacity and thickness (and weight of the carrier 
bag), the dataset for the production of recycled LDPE was available, the recycled LDPE would 
result as the best option. This would be especially true for EOL3, since the recycled LDPE 
would be substituting a virgin LDPE waste bin bag.  
 
However, the virgin and recycled LDPE carrier bags examined for this LCA study had different 
volume and weight holding capacities. In order for the recycled LDPE carrier bag to carry the 
same volume as the virgin LDPE carrier bags, more than one bag would be required. This 
increased the environmental impacts associated with the recycled LDPE carrier bag, and this 
was the reason why it does not result as the best option between the carrier bags examined. 
90   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Indeed, the results for LDPErec were more influenced by the sensitivity analysis on the refer-
ence flow than the sensitivity analysis on the production data. 
Lastly, it would be useful for customers to be reminded of the indicative number of reuse times 
obtained by this report by adding this information on the multiple-use carrier bag, for example 
“reuse me at least 10 times”, and together with a suggested end-of-life option “reuse me as 
waste bin bag”, for example. 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   91 

 
8.  Conclusions 
This study identified the best disposal option for each of the carrier bags available in Danish 
supermarkets in 2017. In general, reusing the carrier bag as a waste bin bag is better than 
simply throwing away the bag in the residual waste and it is better than recycling. Recycling 
can potentially offer more benefits in the case of heavy plastic bags, such as PP, and PET. 
Reuse as a waste bin bag is most beneficial for light carrier bags, such as LDPE, paper and 
biopolymer. When reuse as a waste bin bag is not feasible, for example when the bag can 
easily be punctured, torn, or wetted, incineration is the most preferable solution from an envi-
ronmental point of view. 
 
In general, LDPE carrier bags, which are the bags that are always available for purchase in 
Danish supermarkets, are the carriers providing the overall lowest environmental impacts 
when not considering reuse. In particular, between the types of available carrier bags, LDPE 
carrier bags with rigid handle are the most preferable. Effects of littering for this type of bag 
were considered negligible for Denmark. Carrier bags alternatives that can provide a similar 
performance are unbleached paper and biopolymer bags, but for a lower number of environ-
mental indicators. Heavier carrier bags, such as PP, PET, polyester, bleached paper and tex-
tile bags need to be reused multiple times in order to lower their environmental production 
cost. Between the same bag types, woven PP carrier bags provided lower impacts than non-
woven PP bags, unbleached paper resulted more preferable than bleached paper, and con-
ventional cotton over organic cotton. 
 
For all carrier bags, reuse as many times as possible before disposal is strongly encouraged. 
This study also calculated how many times each bag would need to be reused in order to 
lower its associated environmental impacts to the levels of the LDPE carrier bag. The number 
of calculated reuse times varies if only one environmental indicator is observed, or if all envi-
ronmental indicators are taken into account. 
 
The results are the following9: 
 
  Simple LDPE bags: Can be directly reused as waste bin bags for climate change, should 
be reused at least 1 time for grocery shopping considering all other indicators; finally reuse 
as waste bin bag. 
  LDPE bags with rigid handle: Can be directly reused as waste bin bags considering all 
indicators; finally reuse as waste bin bag. 
  Recycled LDPE bags: Reuse for grocery shopping at least 1 time for climate change, at 
least 2 times considering all indicators; finally reuse as waste bin bag. 
  PP bags, non-woven: Reuse for grocery shopping at least 6 times for climate change, and 
up to 52 times considering all indicators; finally dispose with recyclables, otherwise reuse as 
waste bin bag if possible, lastly incinerate. 
                                                           
9 The number of times for “all indicators” refers to the highest number of reuse times among those calcu-
lated for each impact category. For light carrier bags (LDPE, PP, PET...) the high numbers of reuse times 
are given by a group of impact categories with similar high values. Conversely, for composite and cotton 
the very high number of reuse times is given by the ozone depletion impact alone. Without considering 
ozone depletion, the number of reuse times ranges from 50 to1400 for conventional cotton, from 150 to 
3800 for organic cotton, and from 0 to 740 for the composite material bag. The highest number is due to 
the use of water resource, but also to freshwater and terrestrial eutrophication. Results for the number of 
reuse times for each impact category, minimum-maximum ranges and average number of reuse times 
are provided in Appendix C. 
92   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
  PP bags, woven: Reuse for grocery shopping at least 5 times for climate change, at least 
45 times considering all indicators; finally dispose with recyclables, otherwise reuse as 
waste bin bag if possible, lastly incinerate. 
  PET bags: Reuse for grocery shopping at least 8 times for climate change, and up to 84 
times considering all indicators; finally dispose with recyclables, otherwise reuse as waste 
bin bag if possible, lastly incinerate. 
  Polyester bags: Reuse for grocery shopping at least 2 times for climate change, and up to 
35 times considering all indicators; finally dispose with recyclables, otherwise reuse as 
waste bin bag if possible, lastly incinerate. 
  Biopolymer bags: Can be directly reused as waste bin bags for climate change, should be 
reused and up to 42 times for grocery shopping considering all other indicators. Finally, re-
use as waste bin bag if possible, otherwise incinerate. 
  Unbleached paper bags: Can be directly reused as waste bin bags for climate change, 
should be reused and up to 43 times considering all other indicators. Finally, reuse as waste 
bin bag if possible, otherwise incinerate. 
  Bleached paper bags: Reuse for grocery shopping at least 1 time for climate change, and 
up to 43 times considering all indicators; reuse as waste bin bag if possible, otherwise incin-
erate. 
  Organic cotton bags: Reuse for grocery shopping at least 149 times for climate change, 
and up to 20000 times considering all indicators; reuse as waste bin bag if possible, other-
wise incinerate. 
  Conventional cotton bags: Reuse for grocery shopping at least 52 times for climate 
change, and up to 7100 times considering all indicators; reuse as waste bin bag if possible, 
otherwise incinerate. 
  Composite bags: Reuse for grocery shopping at least 23 times for climate change, and up 
to 870 times considering all indicators; reuse as waste bin bag if possible, otherwise inciner-
ate. 
 
This study focused on identifying the number of reuse times based on the environmental per-
formance of the carrier bags. The results obtained on the minimum number of reuse times are 
intended to raise the discussion among the stakeholders on the effective expected lifetime of 
each carrier bag. While the calculated number of reuse times might be compliant with the 
functional lifetime of PP, PET and polyester carrier bags, but might surpass the lifetime of 
bleached paper, composite and cotton carriers, especially considering all environmental indi-
cators. In addition it should be kept in mind that the reuse times calculated are held up against 
a use of a reference bag a single time. If the reference bag is reused, it would mean that the 
reuse time of the other bags would increase proportionally. 
 
In particular, the results of the present assessment have highlighted the importance of the 
design of the carrier bag and its functionality, especially for cotton carriers. In order to lower 
the number of reuse times, designs with light fabric and large volumes should be preferred. 
These design differences can largely lower the impacts. However, the required number of 
reuse times for all impact categories may still be unfeasible and more than the lifetime of the 
bag. 
 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   93 

 
9.  References  
Aliexpress (2018) https://www.aliexpress.com/item/Size-45x55cm-Recycle-Polyester-Shoping-
Bag-for-Supermarket-Colorful-reusable-grocery-bags-foldable-shopping-
bags/1962073694.html, accessed 27 January 2018. 
Alonso Altonaga, M., 2017. Environmental comparison of grocery shopping bags in Danish 
supermarkets – Reuse, recycling and disposal. Technical University of Denmark. 
Amazon (2018) https://www.amazon.co.uk/Pack-Cotton-cotton-Natural-
handle/dp/B00TVEJOMG, accessed 27 January 2018. 
ASTM (2018) Standard Specification for Labeling of Plastics Designed to be Aerobically Com-
posted in Municipal or Industrial Facilities. https://www.astm.org/Standards/D6400.htm, 
accessed 27 January 2018. 
Astrup, T. (2008): Management of APC residues from W-t-E plants, an overview of manage-
ment options and treatment methods. Second edition. Produced by members of ISWA-
WG Thermal Treatment of waste subgroup on APC residues from W-t-E plants. ISWA, 
Copenhagen. 
Bagsupplies (2018) https://bagsupplies.com.au/products/bag-supplies/bag-materials/custom-
woven-polypropylene-bags, accessed 27 January 2018. 
Bang Jensen, M., Kromann, M., Lund Neidel, T., Bjørn Jakobsen, J., Møller, J., 2013. Miljø- og 
samfundsøkonomisk vurdering af muligheder for øget genanvendelse af papir, pap, 
plast, metal og organisk affald fra dagrenovation, Miljøprojekt nr. 1458. Miljøministeriet. 
Miljøstyrelsen. doi:978-87-92903-80-8 
Braratcottons (2018) http://www.bharatcottons.com/polypropylene-non-woven-fabrics-
1013740.html, accessed 27 January 2018. 
C-bags (2018) http://www.c-bags.be/plastieken-draagtassen-gallerij/soudal-ldpe-plastieken-
draagtassen, accessed 27 January 2018. 
Clavreul, J., Baumeister, H., Christensen, T.H., Damgaard, A., 2014. An environmental as-
sessment system for environmental technologies. Environ. Model. Softw. 60, 18–30. 
COWI, 2017. Personal Communication with Jens Bjørn Jacobsen, COWI, Denmark 
Customgrocerybags (2018) https://www.customgrocerybags.com/100-recycled-p-e-t-glossy-
shopper.html, accessed 27 January 2018. 
Ecostoviglie (2018) https://www.ecostoviglie.com/shopper-sacchetti-e-bustine-
monouso/shopper-fodere-e-cestini-compostabili/shopper-compostabile-in-mater-bi--light-
-2777x50-3-g.html, accessed 27 January 2018. 
Edwards, C., Fry, J.M., 2011. Life cycle assessment of supermarket carrier bags: a review of 
the bags available in 2006, Evidence report. Bristol, United Kingdom. 
Emadian, S.M., Onay, T.T., Demirel, B., 2017. Biodegradation of bioplastics in natural envi-
ronments. Waste Management 59, 526–536. 
Environment Australia, 2002. Plastic Shopping Bags – Analysis of Levies and Environmental 
Impacts Final Report. Victoria, Australia. 
European Commission, 1994. European Parliament and Council Directive 94/62/EC of 20 
December 1994 on packaging and packaging waste. 
European Commission, 2010. Analysing of existing Environmental Impact Assessment meth-
odologies for use in Life Cycle Assessment. International Reference Life Cycle Data 
System (ILCD) Handbook. European Commission, Joint Research Centre, Institute for 
Environment and Sustainability. Publications office of the European Union, Luxembourg. 
European Commission, 2011. Assessment of impacts of options to reduce the use of single-
use plastic carrier bags. 
94   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Forster, D., Andres, C., Verma, R., Zundel, C., Messmer, M.M., Mäder, P., 2013. Yield and 
economic performance of organic and conventional cotton-based farming systems--
results from a field trial in India. PLoS One 8, e81039. doi:10.1371/journal.pone.0081039 
Giugliano M, Cernuschi S, Grosso M, Rigamonti L. (2011) Material and energy recovery in 
integrated waste management system. An evaluation based on life cycle assessment. 
Waste Management 2011;31:2092–101. 
Indiamart (2018) https://www.indiamart.com/zeelcreation/, accessed 27 January 2018. 
Indiamart (2018b) https://www.indiamart.com/harshpackagingmumbai/, accessed 27 January 
2018. 
ISO, 2006. Environmental management - Life cycle assessment - Principles and framework - 
ISO 14040. International Organization for Standardization, Geneva, Switzerland.ISO, 
2006b. Environmental management - Life cycle assessment - Requirements and guide-
lines - ISO 14044. 
Khoo, H.H., Tan, R.B.H., 2010. Environmental impacts of conventional plastic and bio-based 
carrier bags. Int. J. LIFE CYCLE Assess. 15, 338–345. 
Kimmel, R.M., Cooksey, K.D., 2014. Life Cycle Assessment of Grocery Bags in Common Use 
in the United States, Environmen. ed. Clemson University Digital Press, Clemson, SC. 
Mori, M., Drobnič, B., Gantar, G., Sekavčnik, M., 2013. Life Cycle Assessment of supermarket 
carrier bags and opportunity of biolpastics, in: Proceedings of SEEP2013. Maribor, Slo-
venia. 
Muthu, S.S., Li, Y., 2014. Assessment of Environmental Impact by Grocery Shopping Bags, 
EcoProduction. Springer Singapore, Singapore. 
Natuerlich-verpacken (2018) https://www.natuerlich-verpacken.de/Paper-bag-220-x-110-x-
260-mm-brown-smooth-flat-handle, accessed 27 January 2018. 
Paxonplastic (2018) https://www.paxonplastic.com/ldpe-the-first-polyethylene/, accessed 27 
January 2018. 
Razza, F., 2014. Eco-balance of 3D-shaped renewable biopolymer foam for a novel genera-
tion of transportation packaging: a “cradle to grave” approach using life cycle assess-
ment (LCA) methodology. Universitá degli Studi della Tuscia di Viterbo. 
Replast A/S (2000), Vojens, Denmark (from the EDIP97 database, based on IPU-NF-B2445). 
Riber, C., Petersen, C., Christensen, T.H., 2009. Chemical composition of material fractions in 
Danish household waste. Waste Manag. 29, 1251–1257. 
Rigamonti, L., Grosso, M., Møller, J., Martinez Sanchez, V., Magnani, S., Christensen, T.H., 
2014. Environmental evaluation of plastic waste management scenarios. Resour. Con-
serv. Recycl. 85, 42–53.  
Schmidt, A. & Strömberg, K. (2006). Genanvendelse i LCA - systemudvidelse. Miljønyt nr. 81 
2006. Miljøministeriet, Miljøstyrelsen. 
Schmidt, A., Watson, D., Roos, S., Askham, C., Poulsen, P.B., 2016. Gaining benefits from 
discarded textiles – LCA of different treatment pathways. Copenhagen, Denmark. 
Skjern Papirfabrik (2005) Sustainability report, Skjern Papirfabrik A/S, 
http://www.skjernpaper.com/sustainability 
Topcottonbags (2018) http://www.topcottonbags.com/jute-bags/, accessed 27 January 2018. 
Vestforbrænding (2013). Grønt regnskab. 
http://www.vestfor.dk/c/document_library/get_file?uuid=afcc6654-8748- 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   95 

 
Appendix A. 
Life Cycle 
Inventories (LCIs) 
This Section provides the data and corresponding references utilized for the present LCA 
study.  
Table A1. Material composition used for each carrier bag, 
Scenario  Material 
Material composition used 
LDPEAVG  LDPE 
Soft plastic (Riber et al., 2009) 
LDPEs 
LDPE simple 
Soft plastic (Riber et al., 2009) 
LDPEh 
LDPE rigid handle 
Soft plastic (Riber et al., 2009) 
LDPErec 
LDPE recycled 
Soft plastic (Riber et al., 2009) 
P2a 
PP non-woven 
Soft plastic (Riber et al., 2009) 
PPwov 
PP woven  
Soft plastic (Riber et al., 2009) 
PETREC  PET recycled 
Soft plastic (Riber et al., 2009) 
PETPOL 
Polyester 
Soft plastic (Riber et al., 2009) 
BP 
Biopolymer 
Soft plastic (Riber et al., 2009); modified according to Razza (2014) 
PAP 
Paper 
Paper and carton containers (Riber et al., 2009) 
PAPB 
Paper 
Paper and carton containers (Riber et al., 2009) 
COTORG  Cotton organic 
Textiles (Riber et al., 2009) 
COT 
Cotton conventional 
Textiles (Riber et al., 2009) 
COM 
Jute, PP, cotton 
Textiles (Riber et al., 2009) 
W1 
LDPE 
Soft plastic (Riber et al., 2009) 
All 
Packaging: cardboard 
Other clean cardboard (Riber et al., 2009) 
 
 
 
96   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table A2. Amount of material needed for production of the carrier bags and the waste 
bin bag, percent lost during production and final weight of the bag. 

Amount material produced  Percent lost during manufacturing 
Weight carrier bag 
Scenario 
(kg/bag) 
(%/bag) 
(kg/bag) 
LDPEavg 
0.025 
5.15 
0.024 
LDPEs 
0.019 
5.15 
0.018 
LDPEh 
0.031 
5.15 
0.029 
LDPErec 
0.026 
5.15 
0.025 
PP 
0.144 
5.05 
0.137 
PPwov 
0.125 
5.05 
0.119 
PETrec 
0.159 
5.15 
0.151 
PETpol 
0.048 
5.05 
0.046 
BP 
0.018 
1.03 
0.018 
PAP 
0.045 
5.15 
0.042 
PAPb 
0.045 
5.15 
0.042 
COTorg 
0.254 
0.98 
0.252 
COT 
0.234 
0.98 
0.232 
COM 
0.282 
0.98 
0.279 
W1 
0.010 
5.15 
0.009 
 
Table A3. Ecoinvent processes utilized to model the production of the material of the 
carrier bags. All datasets were retrieved from Ecoinvent version 3.4 (2017), consequen-
tial. 

Scenario 
Ecoinvent process name 
LDPEavg 
Market for polyethylene, low density, granulate; GLO (kg) 
LDPEs 
Market for polyethylene, low density, granulate; GLO (kg) 
LDPEh 
Market for polyethylene, low density, granulate; GLO (kg) 
LDPErec 
Market for polyethylene, low density, granulate; GLO (kg) 
PP 
Market for polypropylene, granulate; GLO (kg) 
PPwov 
Market for polypropylene, granulate; GLO (kg) 
PETrec 
Market for polyethylene terephthalate, granulate, amorphous, recycled; RoW (kg) 
PETpol 
Market for polyethylene terephthalate, granulate, amorphous; GLO (kg) 
BP 
Market for polyester-complexed starch biopolymer; GLO (kg) 
PAP 
Kraft paper production, unbleached; RER (kg) 
PAPb 
Kraft paper production, bleached; RER (kg) 
COTorg 
Market for textile, woven cotton; GLO (kg) 
COT 
Market for textile, woven cotton; GLO (kg) 
Market for textile, jute; GLO (kg) 
COM 
Market for polypropylene, granulate; GLO (kg) 
Market for textile, woven cotton; GLO (kg) 
W1 
Packaging film production, low density polyethylene; RER (kg) 
 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   97 

 
 
 
Table A4. Ecoinvent processes utilized to model the treatment of residues from produc-
tion, for each carrier bag. All datasets were retrieved from Ecoinvent version 3.4 (2017), 
consequential. 

Scenario 
Ecoinvent process name 
Treatment of waste polyethylene, municipal incineration; Europe 
LDPEAVG, LDPEs, LDPEh, LDPErec, W1 
without Switzerland (kg) 
Treatment of waste polypropylene, municipal incineration; CH 
P2a, PPwov 
(kg) 
Treatment of waste polyethylene terephthalate, municipal incin-
PETREC, PETPOL 
eration; Europe without Switzerland (kg) 
Treatment of waste paperboard, municipal incineration; Europe 
BP, PAP, PAPB 
without Switzerland (kg) 
Treatment of waste textile, soiled, municipal incineration; RoW 
COTORG, COT, COM  
(kg) 
 
98   The Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table A5. Carrier bag production: material and energy requirements. The literature ref-
erences are provided as superscript. The references were used to obtain average con-
sumption values. 

Titanium 
Cotton 
PP 
Packaging 
Electricity 
Heat 
Water 
Ink 
Glue 
Scenario 
dioxide 
thread 
thread 
amount 
kWh/kg 
MJ/kg 
L/kg 
kg/kg 
kg/kg 
kg/kg 
kg/kg 
kg/kg 
kg/kg 
0.741 
1.522a 

0.034 
0.011a 



0.048 
0.998a 
0.032a 
0.078a 
LDPEAVG, 
 
 
 
 
 
 
LDPEs, 
0.987a 
0.070b 
0.042b 
 
 
 
 
 
 
LDPEh, 
0.490b 
0.001c 
0.024c 
LDPErec 
 
 
 
 
 
 
0.609c 
(LDPE) 
 
 
 
 
 
 
 
 
0.950c 
 
 
 
 
 
 
 
 
0.410d 
 
 
 
 
 
 
 
 
1.854 
1.308 
0.807a 

0.054 
0.007 
0.004a 

0.069 
0.612b 
2.616a 
0.067d 
0.004a 
0.087a 
PP, PPwov 
 
 
 
 
1.500c 
Negligiblee 
0.042d 
0.010b 
0.069b 
(PP) 
 
 
 
 
2.204d 
0.009d 
0.050c 
 
 
 
 
 
 
3.100d 
0.006d 
 
 
 
 
 
 
 
PETREC 
1.854 
1.308 
0.807a 

0.054 
0.007 
0.004a 

0.069 
(PET) 
PETPOL (Pol-
1.854 
1.308 
0.807a 

0.054 
0.007 
0.004a 

0.069 
yester) 
1.112 

1.343a 
0.021a 
0.005a 



0.043 
BP (Biopoly-
1.066a 
Negligiblee 
0.054a 
 
 
 
 
 
 
mer) 
0.858c 
0.033c 
 
 
 
 
 
 
 
1.413c 
 
 
 
 
 
 
 
 
0.216 



0.014a 


0.027 
0.049 
PAP, PAPB 
0.042b 
0.027a 
0.058a 
(Paper) 
 
 
 
 
 
 
0.390d 
0.027b 
0.040b 
 
 
 
 
 
 
COTORG, 
0.006a 
0.092a 



0.007a 


0.108a 
COT (Cotton) 
COM (Compo-
0.006a 
0.092a 



0.007a 


0.108a 
site) 
a (Edwards and Fry, 2011) 
b (Kimmel and Cooksey, 2014) 
c (Mori et al., 2013) 
d (Muthu and Li, 2014) 
e (Khoo and Tan, 2010) 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   99 

 
Table A6. 
With reference to the energy and material requirements listed in Table 
A4, this table provides the Ecoinvent datasets utilized for the corresponding energy and 
material requirements. For completeness, the table reports in which scenarios the da-
tasets were used.  

Ancillary material 
Scenario 
LDPEAVG 
Ecoinvent process 
LDPEs 
PP 
PAP 
COTORG 
Type 
(v 3.4, conse-
PETREC 
PETPOL 
BP 
COM 
LDPEh 
PPwov 
PAPB 
COT 
quential) 
LDPErec 
Market group for 
electricity, high 
Electricity 








voltage; RER 
(kWh) 
Market group for 
heat, district or 
Heat 




 
 


industrial, natural 
gas; RER (MJ) 
Market for tap 
water; Europe 
Water 
 




 
 
 
without Switzer-
land (kg) 
Market for titani-
Titanium 
um dioxide; RoW 

 
 
 

 
 
 
dioxide 
(kg) 
Market for printing 
ink, rotogravure, 
without solvent, in 
Ink 






 
 
55% toluene solu-
tion state; GLO 
(kg) 
Market for textile, 
Cotton 
woven cotton; 
 



 
 


thread 
GLO (kg) 
Market for po-
PP thread  lypropylene, gra-
 



 
 
 
 
nulate; GLO (kg) 
Bitumen adhesive 
Glue 
compound pro-
 
 
 
 
 

 
 
duction, hot; RER 
Corrugated board 
Packaging  box production; 








RER (kg) 
 
 
 
100   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table A7. Transportation distances utilized in this LCA study. 
Transportation process 
Distance 
EOL1 
EOL2 
EOL3 
Transport of packaging material to carrier bag production 
2000 km 



facility (EU) 
Transport of carrier bag to supermarket (EU-DK) 
2000 km 



Collection of packaging from supermarkets (DK) 
15 km 



Transport to packaging recycling (DK-EU) 
2000 km 



Collection of residual waste (DK) 
10 km 

 

Transport fly ash (DK-EU) 
500 km 

 

Transport bottom ash (DK-EU) 
100 km 

 

Collection of recyclables (DK) 
15 km 
 

 
Transportation to sorting (DK) 
500 km 
 

 
Transportation to recycling (DK-EU) 
2000 km 
 

 
 
Table A8. Ecoinvent process used in order to model transportation. 
Transportation process 
Ecoinvent process (v 3.4, consequential) 
Transport of packaging material to carrier bag production 
facility (EU) 
Transport of carrier bag to supermarket (EU-DK) 
Transport to packaging recycling (DK-EU) 
Transportation to sorting (DK) 
Transport, freight, lorry 16-32 metric ton, 
Transport fly ash (DK-EU) 
EURO6; RER  
Transport bottom ash (DK-EU) 
(metric ton*km) 
Transportation to recycling (DK-EU) 
Collection of packaging from supermarkets (DK) 
Collection of recyclables (DK) 
Collection of residual waste (DK) 
 
Table A9. Material losses during recycling of single-wall corrugated cardboard packag-
ing. 

Material fraction 
Recycled (%) 
Residues (%) 
Other clean cardboard (Riber et al., 2009) 
91 

 
Table A10. Material and energy requirements and corresponding Ecoinvent processes 
used for the modelling of the recycling of single-wall corrugated cardboard packaging. 
Material and energy requirements were obtained from Skjern Papirfabrik (2005). 

Ecoinvent process name (v 3.4, consequential) 
Amount  Unit 
Market group for tap water; RER 
17  kg/kg Total Wet Weight 
Market group for electricity, high voltage; RER 
1.5  kWh/kg Total Wet Weight 
Natural gas, from high pressure network (1-5 bar), at service station; CH 
0.069  kg/kg Total Wet Weight 
Linerboard production, kraftliner; RER 
-0.9  kg/kg Total Wet Weight 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   101 

 
Table A11. Emissions during recycling of single-wall corrugated cardboard packaging. 
Elementary exchange 
Compartment  Sub compartment  Amount  Unit  Per 
Nitrogen oxides 
air 
unspecified 
8.80E-05  kg 
kg Total Wet Weight 
Carbon dioxide, fossil 
air 
unspecified 
0.18 
kg 
kg Total Wet Weight 
Sulfur dioxide 
air 
unspecified 
0.0001 
kg 
kg Total Wet Weight 
COD, Chemical Oxygen Demand 
water 
surface water 
0.0011 
kg 
kg Total Wet Weight 
Nitrogen 
water 
surface water 
6.00E-05  kg 
kg Total Wet Weight 
Phosphate 
water 
surface water 
2.50E-06  kg 
kg Total Wet Weight 
Suspended solids, unspecified 
water 
surface water 
0.00016  kg 
kg Total Wet Weight 
Particulates, > 2.5 um, and < 10um  air 
unspecified 
2.80E-05  kg 
kg Total Wet Weight 
 
Table A12. Ecoinvent process used for modelling the treatment of residues from pack-
aging recycling. 

Ecoinvent process name (v 3.4, consequential) 
Amount  Unit 
Treatment of waste paperboard, municipal incineration; Europe without Switzerland  1 
kg/kg Total Wet Weight 
Table A13. Material and energy requirements and corresponding Ecoinvent processes 
used for the modelling of the incinerator technology. Material and energy requirements 
were obtained from Vestforbrænding (2013). Electricity recovery was considered 22 %, 
heat recovery 73 %. Please refer to Appendix B for the marginal electricity and heat 
utilized. 

Ecoinvent process name (v 3.4, consequential) 
Amount 
Unit 
quicklime production, milled, packed; CH 
0.00034 
kg/kg Total Wet Weight 
market for ammonia, liquid; RER 
0.00153 
kg/kg Total Wet Weight 
activated carbon production, granular from hard coal; RER 
0.00104 
kg/kg Total Wet Weight 
market for tap water; Europe without Switzerland 
0.397 
kg/kg Total Wet Weight 
hydrochloric acid production, from the reaction of hydrogen with chlorine; RER 
5.60E-06  kg/kg Total Wet Weight 
market for sodium hydroxide, without water, in 50% solution state; GLO 
2.40E-05  kg/kg Total Wet Weight 
market for calcium carbonate, precipitated; GLO 
0.00567 
kg/kg Total Wet Weight 
Marginal electricity, see Appendix B 
-0.22/3.6  kWh/MJ  
Marginal heat, see Appendix B 
-0.73 
MJ/MJ 
 
Table A14. Emissions to the air, unspecified, Vestforbrænding (2013). 
Elementary exchange 
Amount 
Unit 
Carbon monoxide 
3.30E-02 
kg/kg Total Wet Weight 
Dust 
4.06E-03 
kg/kg Total Wet Weight 
HCl 
6.58E-03 
kg/kg Total Wet Weight 
HF 
2.70E-04 
kg/kg Total Wet Weight 
Manganese 
1.12E-02 
kg/kg Total Wet Weight 
NH3 
4.31E-03 
kg/kg Total Wet Weight 
Nickel 
3.47E-06 
kg/kg Total Wet Weight 
Nitrogen Oxides (NOx) 
5.49E-01 
kg/kg Total Wet Weight 
PAH (B[a]P-eq) 
4.31E-06 
kg/kg Total Wet Weight 
PCDD/F 
1.80E-11 
kg/kg Total Wet Weight 
SO2/SO3 
1.08E-02 
kg/kg Total Wet Weight 
102   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table A15. Transfer coefficients to air emissions from input composition, Vestfor-
brænding (2013).  

Parameter 
Unit 
Value 
Hg 
% Hg in 
0.7476 
Cd 
% Cd in 
0.0064 
Pb 
% Pb in 
0.0008 
Cr 
% Cr in 
0.0394 
Cu 
% Cu in 
0.003 
As 
% As in 
0.012 
Ni 
% Ni in 
0.033 
Sb 
%Sb in 
0.119 
 
Table A16. Transfer coefficients for degradation and residues for the soft plastic mate-
rial fraction, Vestforbrænding (2013). 

Fraction  Degradation 
Fly ash 
Scrap metals 
Bottom ash 
name 
Water 
VS 
Ash 
Water 
VS 
Ash 
Water 
VS 
Ash 
Water 
VS 
Ash 
(%) 
(%TS) 
(%TS) 
(%) 
(%TS) 
(%TS) 
(%) 
(%TS) 
(%TS) 
(%) 
(%TS) 
(%TS) 
Soft 
100 
99.9 



12.6 




0.1 
87.4 
plastic 
 
Table A17. Emissions to water, Vestforbrænding incinerator. 
Elementary exchange 
Compartment 
Value 
Unit 
Antimony 
water 
8.80E-06 
kg/kg Total Wet Weight 
Arsenic 
water 
5.60E-07 
kg/kg Total Wet Weight 
Barium 
water 
7.20E-06 
kg/kg Total Wet Weight 
Cadmium 
water 
9.67E-08 
kg/kg Total Wet Weight 
Calcium 
water 
4.16E-02 
kg/kg Total Wet Weight 
Chloride 
water 
4.11E+00 
kg/kg Total Wet Weight 
Chromium 
water 
4.48E-06 
kg/kg Total Wet Weight 
Cobalt 
water 
4.00E-08 
kg/kg Total Wet Weight 
Copper 
water 
2.00E-04 
kg/kg Total Wet Weight 
Fluoride 
water 
2.08E-03 
kg/kg Total Wet Weight 
Iron 
water 
4.00E-05 
kg/kg Total Wet Weight 
Lead 
water 
1.20E-06 
kg/kg Total Wet Weight 
Magnesium 
water 
2.56E-05 
kg/kg Total Wet Weight 
Manganese 
water 
6.40E-07 
kg/kg Total Wet Weight 
Mercury 
water 
1.35E-07 
kg/kg Total Wet Weight 
Molybdenum 
water 
7.20E-05 
kg/kg Total Wet Weight 
Nickel 
water 
1.68E-06 
kg/kg Total Wet Weight 
Selenium 
water 
1.12E-06 
kg/kg Total Wet Weight 
Silicon 
water 
2.40E-04 
kg/kg Total Wet Weight 
Zinc 
water 
2.56E-06 
kg/kg Total Wet Weight 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   103 

 
 
Table A18. Material and energy requirements and corresponding Ecoinvent processes 
used for the modelling of the treatment of fly ashes. Values for material and energy 
requirements were obtained from Astrup (2008). 

Ecoinvent process name (v 3.4, consequential) 
Amount 
Unit 
market for calcium carbonate, precipitated; GLO 
-0.035 
kg/kg Total Wet Weight 
market group for electricity, high voltage; RER 
0.013 
kWh/kg Total Wet Weight 
market group for diesel; RER 
0.0006 
kg/kg Total Wet Weight 
 
Table A19. Emissions from treatment of fly ashes. (Astrup, 2008). 

Elementary exchange 
Compartment 
Sub compartment 
Amount 
Unit 
Per 
Cadmium, ion 
water 
surface water 
3.10E-09  kg 
kg Total Wet Weight 
Chloride 
water 
surface water 
0.0092 
kg 
kg Total Wet Weight 
Lead 
water 
surface water 
3.10E-10  kg 
kg Total Wet Weight 
Mercury 
water 
surface water 
6.10E-11  kg 
kg Total Wet Weight 
Nickel, ion 
water 
surface water 
1.50E-09  kg 
kg Total Wet Weight 
Sulfate 
water 
surface water 
0.00082 
kg 
kg Total Wet Weight 
Thallium 
water 
surface water 
4.10E-10  kg 
kg Total Wet Weight 
Zinc, ion 
water 
surface water 
1.40E-08  kg 
kg Total Wet Weight 
 
Table A20. Bottom ashes treatment was assumed to occur in a mineral landfill.  
Ecoinvent process name (v 3.4, consequential) 
Amount  Unit 
process-specific burdens, slag landfill; Europe without Switzerland  1 
kg/kg Total Wet Weight 
 
Table A21. Sorting efficiency for recyclables. This sorting plant is assumed to operate 
in Denmark. COWI (2017) 

Carrier bag material 
Scenarios 
Sorted (%) 
Residues (%) 
LDPEAVG, LDPEs, LDPEh, 
LDPE 
70 
30 (to incineration in DK) 
LDPErec 
PP 
PP, PPwov 
70 
30 (to incineration in DK) 
Recycled PET 
PETREC 
70 
30 (to incineration in DK) 
Polyester 
PETPOL 
70 
30 (to incineration in DK) 
Paper 
PAP, PAPB 
70 
30 (to incineration in DK) 
 
Table A22. Material and energy requirements, sorting plant for recyclables in Denmark. 
COWI (2017). 

Ecoinvent process name (v 3.4, consequential) 
 
Amount 
Unit 
Marginal electricity, see Appendix B 
0.00982 
kWh/kg Total Wet Weight 
Marginal heat, see Appendix B 
0.0189 
MJ/kg Total Wet Weight 
 
 
 
104   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table A23. Sorting efficiency of recyclables, at recycling plant. COWI (2017). 
Carrier bag material 
Scenarios 
Sorted (%) 
Residues (%) 
Reference 
LDPEAVG, LDPEs, 
LDPE 
90.3 
9.7 (to incineration in EU)  Replast A/S (2000) 
LDPEh, LDPErec 
PP 
PP, PPwov 
90.3 
9.7 (to incineration in EU)  Replast A/S (2000) 
24.5 (to incineration in 
Recycled PET 
PETREC 
75.5 
Giugliano et al. (2011) 
EU) 
24.5 (to incineration in 
Polyester 
PETPOL 
75.5 
Giugliano et al. (2011) 
EU) 
Paper 
PAP, PAPB 
91 
9 (to incineration in EU)  Skjern Papirfabrik (2005) 
 
Table A24. Material and energy requirements, LDPE recycling (Schmidt and Strömberg, 
2006). 

Ecoinvent process name (v 3.4, consequential) 
Amount 
Unit 
market group for electricity, high voltage; RER 
0.76 
kWh/kg Total Wet Weight 
market group for tap water; RER 
2.6 
kg/kg Total Wet Weight 
market group for diesel; RER 
0.00047 
kg/kg Total Wet Weight 
steam production, in chemical industry; RER 
0.32 
kg/kg Total Wet Weight 
polyethylene production, low density, granulate; RER 
-0.9 
kg/kg Total Wet Weight recycled 
 
Table A25. Ecoinvent process used to model end-of-life of LDPE residues from the re-
cycling process. 

Ecoinvent process name (v 3.4, consequential) 
Amount  Unit 
treatment of waste polyethylene, municipal incineration; Europe without Switzerland  1 
kg/kg Total Wet Weight 
 
Table A26. Material and energy requirements, PP recycling (Schmidt and Strömberg, 
2006). 

Ecoinvent process name (v 3.4, consequential) 
Amount 
Unit 
market group for electricity, high voltage; RER 
0.76 
kWh/kg Total Wet Weight 
market group for tap water; RER 
2.6 
kg/kg Total Wet Weight 
market group for diesel; RER 
0.00047 
kg/kg Total Wet Weight 
steam production, in chemical industry; RER 
0.89/2.75 
kg/kg Total Wet Weight 
polypropylene production, granulate; RER 
-0.9 
kg/kg Total Wet Weight recycled 
 
Table A27. Ecoinvent process used to model end-of-life of PP residues from the recy-
cling process. 

Ecoinvent process name (v 3.4, consequential) 
 
Amount 
Unit 
treatment of waste polypropylene, municipal incineration; CH 

kg/kg Total Wet Weight 
 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   105 

 
Table A28. Material and energy requirements, PET recycling (Rigamonti et al., 2014). 
The same process was used for polyester. 

Amou
Ecoinvent process name (v 3.4, consequential) 
Unit 
nt 
market group for electricity, high voltage; RER 
0.32 
kWh/kg Total Wet Weight recycled 
market group for tap water; RER 
2.96 
kg/kg Total Wet Weight recycled 
market for sodium hydroxide, without water, in 50% 
0.003 
kg/kg Total Wet Weight recycled 
solution state; GLO 
steam production, in chemical industry; RER 
0.93 
kg/kg Total Wet Weight recycled 
polyethylene terephthalate production, granulate, 
-0.81 
kg/kg Total Wet Weight recycled 
amorphous, recycled; Europe without Switzerland 
 
Table A29. Ecoinvent process used to model end-of-life of PET residues from the recy-
cling process. The same process was used for polyester. 

Ecoinvent process name (v 3.4, con-
Amount 
Unit 
sequential) 
treatment of waste polyethylene terephta-
late, municipal incineration; Europe with-

kg/kg Total Wet Weight 
out Switzerland 
 
Table A30. Material and energy requirements, paper recycling to cardboard Skjern Pa-
pirfabrik (2005). 

External process name 
Amount  Unit 
market group for electricity, high voltage; RER 
1.5 
kWh/kg Total Wet Weight 
market group for tap water; RER 
17 
kg/kg Total Wet Weight 
natural gas, from high pressure network (1-5 bar), at service station; CH  0.069 
kg/kg Total Wet Weight 
linerboard production, kraftliner; RER 
-0.9 
kg/kg Total Wet Weight 
 
Table A31. Emissions to the environment, paper recycling to cardboard Skjern Papirf-
abrik (2005). 

Elementary exchange 
Compartment  Sub compartment  Amount  Unit  Per 
Nitrogen oxides 
air 
unspecified 
8.80E-05  kg 
kg Total Wet Weight 
Carbon dioxide, fossil 
air 
unspecified 
0.18 
kg 
kg Total Wet Weight 
Sulfur dioxide 
air 
unspecified 
0.0001 
kg 
kg Total Wet Weight 
COD, Chemical Oxygen Demand 
water 
surface water 
0.0011 
kg 
kg Total Wet Weight 
Nitrogen 
water 
surface water 
6.00E-05  kg 
kg Total Wet Weight 
Phosphate 
water 
surface water 
2.50E-06  kg 
kg Total Wet Weight 
Suspended solids, unspecified 
water 
surface water 
0.00016  kg 
kg Total Wet Weight 
Particulates, > 2.5 um, and < 10um  air 
unspecified 
2.80E-05  kg 
kg Total Wet Weight 
 
Table A32. Ecoinvent process used to model end-of-life of paper residues from the re-
cycling process. 

Ecoinvent process name (v 3.4, consequential) 
Amount  Unit 
treatment of waste paperboard, municipal incineration; Europe without Switzerland (kg)  1 
kg/kg Total Wet Weight 
 
 
106   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   107 

 
Appendix B. 
 Marginal 
technologies 
 
This Section summarizes the technological processes that have been selected as marginal 
technologies for the present LCA study. “Marginal technologies” are the technologies that are 
assumed to be displaced by the additional functionalities provided by the functional unit. A 
classic example for LCAs of waste management systems is the energy produced during the 
treatment of waste by incineration. The energy produced represents an additional function, 
and electricity and heat produced are used in the energy system instead of producing primary 
energy from other sources. 
 
For the present studies, marginal technologies needed to be identified for the energy recov-
ered during incineration in Denmark and for the secondary material produced from the recy-
cling processes. The following subsections present the processes and datasets chosen. In 
order to facilitate reading, the selected processes are also provided with their LCIA results 
according to the same references provided in Table 5 in the report. In addition, in order to 
provide results in the same figures, we have used the following normalization references. 
 
Table B1. Normalization references for the impact categories in Table 5. The Normaliza-
tion references are from the Prosuite project which was developed specifically for the 
recommended ILCD method (Laurent et al., 2013), excluded the long-term compartment. 
The impact category “Depletion of abiotic resources” respects ILCD recommended 
characterization factors 

Impact Category 
Acronyms  Normalization references  Units 
Climate change 
CC 
8.10E+03 
PE/year 
Ozone depletion 
OD 
4.14E-02 
PE/year 
Human toxicity, cancer effects 
HTc 
5.42E-05 
PE/year 
Human toxicity, non-cancer effects 
HTnc 
1.10E-03 
PE/year 
Particulate matter/Respiratory inorganics 
PM 
2.76E+00 
PE/year 
Ionizing radiation, human health 
IR 
1.33E+03 
PE/year 
Photochemical ozone formation, human health 
POF 
5.67E+01 
PE/year 
Terrestrial acidification 
TA 
4.96E+01 
PE/year 
Eutrophication terrestrial 
TE 
1.15E+02 
PE/year 
Eutrophication freshwater 
FE 
6.20E-01 
PE/year 
Eutrophication marine 
ME 
9.38E+00 
PE/year 
Ecotoxicity freshwater 
ET 
6.65E+02 
PE/year 
Resources, depletion of abiotic resources, fossil 
RDfos 
6.24E+04 
PE/year 
Resources, depletion of abiotic resources (reserve base)  RD 
0.0343 
PE/year 
 
 
 
108   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Appendix B.1 
Marginal energy technologies 
 
Electricity 
In accordance with the Danish Environmental Protection Agency, the marginal energy tech-
nologies used for this project were based on the latest published project from the Danish Envi-
ronmental Protection Agency, which provided marginal energy technologies for electricity and 
heat: TemaNord 2016:537 - Gaining benefits from discarded textiles - LCA of different treat-
ment pathways, published by the Nordic Council of Ministers (Schmidt et al., 2016). 
In this project, the long-term marginal was defined as capacity growth over a defined period 
(2020-2030). The marginal was provided as a mix of contributing resources, as shown in Table 
B2. The electricity marginal mix was then composed of electricity production from single-
technology processes from the Ecoinvent v3.4 database, consequential version. The normal-
ized results of the created process for electricity were compared to those of the electricity 
market, high voltage, for Denmark in Ecoinvent v3.4, consequential and found compliant (Fig-
ure B1). 
 
Table B2. Marginal mix, electricity, TemaNord 2016:537 
Resource 
Percent contribution (%) 
Ecoinvent v3.4 process 
Biomass 
49.8 
Electricity production, wood, future; GLO (kWh), consequential 
Gas 
18.6 
Electricity production, natural gas, 10MW; CH, (kWh), consequential 
Wind 
31.6 
Electricity production, wind, <1MW turbine, onshore; DK (kWh), consequential 
 
1.80E-04
1.60E-04
1.40E-04
1.20E-04
1.00E-04
8.00E-05
6.00E-05
4.00E-05
2.00E-05
0.00E+00
CC
OD
HTC
HTNC
PM
IR
POF
TA
TE
FE
ME
ET
RD fos
RD
-2.00E-05
Marginal electricity mix, TemaNord 2016:537, single technologies from Ecoinvent v3.4, consequential
Market for electricity, high voltage; DK, Ecoinvent v3.4, consequential
 
Figure B1. Marginal electricity mix normalized results, obtained from single technology 
dataset from Ecoinvent v3.4, consequential, according to the percent contribution iden-
tified in TemaNord 2016:537, compared to the normalized results of the market for elec-
tricity process, retrieved from Ecoinvent v3.4, consequential. 

 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   109 

 
Heat 
In the TemaNord 2016:537 project the marginal technology from heat was chosen based on 
the project Miljøprojekt 1458 (Bang Jensen et al., 2013). The contribution of resources to the 
marginal heat mix is provided in Table B3. In Miljøprojekt 1458 it was assumed that waste heat 
could not replace waste heat, therefore heat from incineration is not part of the heat marginal 
mix. The Ecoinvent 3.4 processes used to compose the dataset are specified in Table B3. For 
all processes, the selection involved finding heat production datasets from single technologies 
and comparing the normalized results of many single-technologies for heat production of the 
same type. Due to high differences between the normalized results and to the unavailability of 
single technologies datasets for biogas, we selected a process from the allocation at the point 
of substitution database instead of the consequential one. The differences in the overall nor-
malized result are minor, due to the minor contribution of biogas. Figure B2 provides a contri-
bution analysis of the single technologies composing the dataset. 
 
Table B2. Marginal mix, electricity, Miljøprojekt 1458 
Resource 
Percent cont-
Ecoinvent v3.4 process 
ribution (%) 
Biomass 
39  Heat production, hardwood chips from forest, at furnace 5000kW, state-of-the-art 
2014; CH (MJ), consequential 
Gas 
26  Heat production, natural gas, at boiler modulating >100kW; Europe without Switzer-
land (MJ), consequential 
Coal 
20  Heat production, at hard coal industrial furnace 1-10MW; Europe without Switzer-
land (MJ), consequential 
Oil 
9  Heat production, heavy fuel oil, at industrial furnace 1MW; CH (MJ), consequential 
Biogas 
6  Heat and power co-generation, biogas, gas engine; DK (MJ), allocation at the point 
of substitution 
 
3.50E-05
3.00E-05
APOS, heat and power co-generation,
biogas, gas engine; DK APOS, Ecoinvent
3.4
2.50E-05
CON, heat production, heavy fuel oil, at
industrial furnace 1MW; CH CON,
2.00E-05
Ecoinvent 3.4
CON, heat production, at hard coal
industrial furnace 1-10MW; Europe
1.50E-05
without Switzerland CON, Ecoinvent 3.4
CON, heat production, natural gas, at
boiler modulating >100kW; Europe without
1.00E-05
Switzerland CON, Ecoinvent 3.4
CON, heat production, hardwood chips
from forest, at furnace 5000kW, state-of-
5.00E-06
the-art 2014; CH CON, Ecoinvent 3.4
0.00E+00
 
Figure B2. Normalized results and contribution analysis associated with the marginal 
heat technology (mix) selected for the present LCA study. 

 
110   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Appendix B.2 
Marginal materials 
The following Table B4 provides a summary of the datasets selected for the production of 
materials and for the recycling (for the carrier bags for which it was considered possible). All 
datasets were retrieved from Ecoinvent 3.4, consequential version. 
 
Each dataset was selected after comparison of many datasets for the production of the same 
material. The criterion for selection of the dataset was general compliance in results with da-
tasets for the same function, and availability of the dataset. For production, market datasets 
were always selected (if available), since market comprises production shares globally and 
average transport distances. For substitution, we selected simply the production in a specific 
geographical area (preferably Europe, since it is where the recycling process is assumed to 
occur). 
 
For recycled LDPE, there was no available dataset on the production. Therefore, the LCA was 
carried out considering the same production as virgin LDPE. The results obtained are as-
sumed to be conservative, since the impacts connected to virgin plastics are usually larger 
than the ones of recycled plastics, as it is shown in Figure B3 for PET, for both datasets are 
available in Ecoinvent v3.4, consequential. 
 
Table B4. Summary of datasets used as production of materials and for the materials 
substituted by the secondary material produced from the recycling processes. 

Material 
Production 
Substitution 
Market for polyethylene, low density, 
Polyethylene production, low density, 
LDPE 
granulate; GLO (kg) 
granulate; RER (kg) 
Market for polyethylene, low density, 
Polyethylene production, low density, 
Recycled LDPE 
granulate; GLO (kg) 
granulate; RER (kg) 
Market for polypropylene, granulate; 
Polypropylene production, granulate; 
PP 
GLO (kg) 
RER (kg) 
Market for polyethylene terephthalate, 
Polyethylene terephthalate produc-
Recycled PET 
granulate, amorphous, recycled; RoW 
tion, granulate, amorphous, recycled; 
(kg) 
Europe without Switzerland (kg) 
Market for polyethylene terephthalate, 
Polyethylene terephthalate produc-
Polyester 
granulate, amorphous; GLO (kg) 
tion, granulate, amorphous; RER (kg) 
Market for polyester-complexed starch 
Starch-complexed biopolymer 

biopolymer; GLO (kg) 
Kraft paper production, unbleached; 
Linerboard production, kraftliner; RER 
Unbleached paper 
RER (kg) 
(kg) 
Kraft paper production, bleached; RER 
Linerboard production, kraftliner; RER 
Bleached paper 
(kg) 
(kg) 
Market for textile, woven cotton; GLO 
(kg) 
Cotton organic 

Minus “CON, market for nitrogen fertilis-
er, as N; GLO (kg)” 
Market for textile, woven cotton; GLO 
Cotton conventional 

(kg) 
Jute 
Market for textile, jute; GLO (kg) 

Packaging film production, low density 
LDPE bin bag 

polyethylene; RER (kg) 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   111 

 
0.0045
0.004
0.0035
0.003
0.0025
PE
0.002
0.0015
0.001
0.0005
0
CC
OD
HTC
HTNC
PM
IR
POF
TA
TE
FE
ME
ET
RD fos
RD
Market for polyethylene terephthalate, granulate, amorphous; GLO
Polyethylene terephthalate production, granulate, amorphous, recycled; RoW
 
Figure B3. Normalized impact scores for virgin and recycled PET production. 
 
 
112   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   113 

 
Appendix C. 
Additional 
results 
This Section reports the primary reuse times calculated for all impact categories, which were 
omitted from the main report for brevity. 
 
Tables C1-C14 provide the calculated number of primary reuse times for each carrier bag in 
comparison to the reference bag LDPEavg, for each impact category. Table C15 provides a 
minimum – maximum range obtained with the calculated number of primary reuse times for 
each impact category. Table C16 provides the minimum-maximum range without the ozone 
depletion impact category, which provided high result scores affecting the cotton and compo-
site bags. Table C17 provides the average number of reuse times obtained averaging results 
across all impact categories. Results in Tables C15, C16 and C17 are rounded. 
 
Table C1. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the ozone depletion impact category 

 
LDPEavg, EOL3 
Ozone Depletion 
EOL1 
EOL2 
EOL3 
LDPEavg 
-0.2 
2.9 
0.0 
LDPEs 
0.2 
4.8 
0.5 
LDPEh 
0.0 
3.7 
0.2 
LDPErec 
0.9 
7.3 
1.2 
PP 
34.5 
52.0 
34.7 
PPwov 
29.7 
44.9 
30.0 
PETrec 
44.3 
60.3 
44.7 
PETpol 
14.3 
18.6 
14.6 
BP 
9.4 

9.7 
PAP 
7.6 
12.0 
7.9 
PAPb 
17.9 
22.4 
18.2 
COTorg 
19961.8 

19962.3 
COT 
7069.0 

7069.2 
COM 
874.1 

874.3 
 
 
 
114   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table C2. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the human toxicity, cancer effects impact category 

 
LDPEavg, EOL3 
Human toxicity, cancer 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.2 
0.1 
0.0 
LDPEs 
0.7 
0.7 
0.4 
LDPEh 
0.4 
0.4 
0.2 
LDPErec 
1.4 
1.4 
1.1 
PP 
1.3 
1.8 
1.0 
PPwov 
1.0 
1.5 
0.7 
PETrec 
5.1 
4.6 
4.8 
PETpol 
1.1 
0.7 
0.9 
BP 
1.0 

0.7 
PAP 
0.3 
0.5 
-0.1 
PAPb 
0.4 
0.6 
0.1 
COTorg 
424.5 

424.0 
COT 
149.6 

149.4 
COM 
36.8 

36.6 
 
 
Table C3. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the human toxicity, non-cancer effects impact category 

 
LDPEavg, EOL3 
Human toxicity, non-cancer 
EOL1 
EOL2 
EOL3 
LDPEavg 
-0.6 
0.9 
0.0 
LDPEs 
-1.3 
0.9 
-0.3 
LDPEh 
-0.9 
0.9 
-0.3 
LDPErec 
-2.2 
0.9 
-1.1 
PP 
-6.6 
2.6 
-5.9 
PPwov 
-5.6 
2.4 
-4.7 
PETrec 
-1.3 
5.2 
-0.2 
PETpol 
0.3 
2.3 
1.1 
BP 
5.4 

6.5 
PAP 
13.5 
14.6 
14.7 
PAPb10 
13.5 
14.6 
14.7 
COTorg 
230.1 

231.8 
COT 
80.3 

81.2 
COM 
-24.5 

-23.9 
                                                           
10 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   115 

 
 
 
 
116   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table C4. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the particulate matter impact category 

 
LDPEavg, EOL3 
Particulate matter 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.6 
2.1 
0.0 
LDPEs 
1.4 
3.6 
0.3 
LDPEh 
1.0 
2.7 
0.3 
LDPErec 
2.7 
5.7 
1.4 
PP 
10.2 
21.2 
9.4 
PPwov 
8.7 
18.2 
7.7 
PETrec 
26.7 
32.8 
25.5 
PETpol 
9.1 
10.5 
8.2 
BP 
11.1 

9.9 
PAP 
16.6 
25.3 
15.3 
PAPb 
28.6 
37.2 
27.4 
COTorg 
1119.8 

1118.0 
COT 
394.6 

393.7 
COM 
300.1 

299.3 
 
Table C5. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the ionizing radiation impact category 

 
LDPEavg, EOL3 
Ionising radiation 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.4 
3.2 
0.0 
LDPEs 
1.1 
5.1 
0.4 
LDPEh 
0.7 
4.0 
0.2 
LDPErec 
2.1 
7.7 
1.3 
PP 
19.8 
35.8 
19.3 
PPwov 
17.0 
30.8 
16.3 
PETrec 
32.1 
40.6 
31.3 
PETpol 
9.9 
12.2 
9.3 
BP 
8.2 

7.3 
PAP 
13.8 
18.4 
12.9 
PAPb11 
13.8 
18.4 
12.9 
COTorg 
906.7 

905.4 
COT 
321.9 

321.3 
COM 
95.5 

95.0 
 
 
                                                           
11 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   117 

 
Table C6. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the human toxicity, photochemical ozone formation im-
pact category 

 
LDPEavg, EOL3 
Photochemical ozone formation 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.5 
0.4 
0.0 
LDPEs 
1.3 
1.0 
0.3 
LDPEh 
0.9 
0.6 
0.3 
LDPErec 
2.2 
1.9 
1.2 
PP 
6.4 
6.8 
5.6 
PPwov 
5.4 
5.7 
4.5 
PETrec 
6.6 
8.2 
5.5 
PETpol 
1.6 
1.9 
0.9 
BP 
1.7 

0.6 
PAP 
1.7 
2.5 
0.6 
PAPb 
2.7 
3.4 
1.7 
COTorg 
194.7 

193.2 
COT 
68.0 

67.2 
COM 
36.8 

36.1 
 
 
Table C7. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the terrestrial acidification impact category 

 
LDPEavg, EOL3 
Terrestrial acidification 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.5 
1.3 
0.0 
LDPEs 
1.2 
2.4 
0.4 
LDPEh 
0.8 
1.7 
0.2 
LDPErec 
2.3 
3.9 
1.3 
PP 
6.7 
15.0 
6.0 
PPwov 
5.7 
12.8 
4.8 
PETrec 
13.6 
20.0 
12.6 
PETpol 
4.3 
5.8 
3.6 
BP 
8.8 

7.8 
PAP 
4.7 
7.7 
3.6 
PAPb 
6.8 
9.8 
5.9 
COTorg 
756.5 

755.1 
COT 
265.5 

264.8 
COM 
142.7 

142.1 
 
 
118   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table C8. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the terrestrial eutrophication impact category 

 
LDPEavg, EOL3 
Terrestrial eutrophication 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.9 
5.0 
0.0 
LDPEs 
1.8 
7.8 
0.3 
LDPEh 
1.3 
6.1 
0.3 
LDPErec 
3.4 
11.7 
1.6 
PP 
19.9 
50.7 
18.7 
PPwov 
17.1 
43.8 
15.6 
PETrec 
39.9 
66.8 
38.2 
PETpol 
14.1 
21.3 
12.8 
BP 
28.7 

26.9 
PAP 
23.4 
34.0 
21.6 
PAPb 
30.0 
40.6 
28.4 
COTorg 
3007.7 

3005.1 
COT 
1058.5 

1057.2 
COM 
740.2 

739.1 
 
 
Table C9. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the freshwater eutrophication impact category 

 
LDPEavg, EOL3 
Freshwater eutrophication 
EOL1 
EOL2 
EOL3 
LDPEavg 
-0.4 
2.9 
0.0 
LDPEs 
-1.0 
3.9 
-0.4 
LDPEh 
-0.7 
3.3 
-0.2 
LDPErec 
-1.1 
5.7 
-0.4 
PP 
29.0 
46.6 
29.5 
PPwov 
25.2 
40.5 
25.9 
PETrec 
95.3 
84.0 
96.0 
PETpol 
34.6 
27.7 
35.1 
BP 
41.0 

41.8 
PAP 
42.2 
44.1 
43.0 
PAPb12 
42.2 
44.1 
43.0 
COTorg 
3325.3 

3326.4 
COT 
1177.8 

1178.3 
COM 
592.2 

592.6 
                                                           
12 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   119 

 
 
 
120   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table C10. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the marine eutrophication impact category 

 
LDPEavg, EOL3 
Marine eutrophication 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.5 
1.1 
0.0 
LDPEs 
1.2 
2.1 
0.4 
LDPEh 
0.8 
1.5 
0.2 
LDPErec 
2.2 
3.5 
1.3 
PP 
10.5 
15.9 
9.9 
PPwov 
9.0 
13.6 
8.2 
PETrec 
13.0 
18.6 
12.1 
PETpol 
4.7 
5.9 
4.0 
BP 
14.2 

13.2 
PAP 
7.8 
9.1 
6.8 
PAPb 
10.0 
11.4 
9.2 
COTorg 
625.1 

623.7 
COT 
220.0 

219.3 
COM 
161.3 

160.8 
 
 
Table C11. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the freshwater ecotoxicity impact category 

 
LDPEavg, EOL3 
Freshwater ecotoxicity 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.4 
0.8 
0.0 
LDPEs 
1.0 
1.6 
0.4 
LDPEh 
0.7 
1.1 
0.2 
LDPErec 
1.9 
2.7 
1.2 
PP 
4.2 
6.8 
3.7 
PPwov 
3.5 
5.8 
2.9 
PETrec 
8.9 
15.8 
8.2 
PETpol 
2.3 
4.5 
1.8 
BP 
1.6 

0.8 
PAP 
2.9 
4.0 
2.1 
PAPb13 
2.9 
4.0 
2.1 
COTorg 
633.5 

632.4 
COT 
224.5 

223.9 
COM 
84.0 

83.6 
                                                           
13 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   121 

 
 
 
122   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table C12. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the resource depletion, fossil impact category 

 
LDPEavg, EOL3 
Resource depletion, fossil 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.6 
0.2 
0.0 
LDPEs 
1.3 
0.8 
0.3 
LDPEh 
0.9 
0.5 
0.3 
LDPErec 
2.3 
1.6 
1.2 
PP 
8.7 
7.3 
7.9 
PPwov 
7.4 
6.2 
6.5 
PETrec 
9.9 
9.8 
8.8 
PETpol 
2.8 
2.3 
2.0 
BP 
1.7 

0.6 
PAP 
0.1 
1.1 
-1.0 
PAPb 
2.3 
3.3 
1.4 
COTorg 
185.9 

184.3 
COT 
65.2 

64.4 
COM 
26.0 

25.3 
 
 
Table C13. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the resource depletion, abiotic impact category 

 
LDPEavg, EOL3 
Resource depletion 
EOL1 
EOL2 
EOL3 
LDPEavg 
0.2 
0.3 
0.0 
LDPEs 
0.7 
1.0 
0.4 
LDPEh 
0.4 
0.6 
0.2 
LDPErec 
1.4 
1.8 
1.1 
PP 
0.5 
1.6 
0.2 
PPwov 
0.3 
1.2 
0.0 
PETrec 
12.2 
9.6 
11.8 
PETpol 
3.6 
2.3 
3.3 
BP 
2.2 

1.9 
PAP 
22.7 
22.5 
22.4 
PAPb14 
22.7 
22.5 
22.4 
COTorg 
278.2 

277.7 
COT 
98.0 

97.8 
COM 
19.2 

19.0 
                                                           
14 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   123 

 
 
 
124   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Table C14. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3), for the water resource depletion impact category 

 
LDPEavg, EOL3 
Water use 
EOL1 
EOL2 
EOL3 
LDPEavg 
1.2 
3.3 
0.0 
LDPEs 
2.3 
5.4 
-0.2 
LDPEh 
1.7 
4.2 
-3.9 
LDPErec 
1.7 
3.8 
0.5 
PP 
38.4 
51.3 
37.2 
PPwov 
33.1 
44.3 
31.9 
PETrec 
69.7 
66.2 
68.5 
PETpol 
22.9 
19.7 
21.6 
BP 
0.1 

-2.3 
PAP 
16.1 
77.2 
13.6 
PAPb15 
16.1 
77.2 
13.6 
COTorg 
3832.8 

3830.4 
COT 
1359.3 

1358.1 
COM 
276.5 

275.3 
 
Table C15. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3). The Table shows a (min, max) range obtained considering 
the minimum and maximum number calculated for each bag for all impact categories. 
Numbers lower than zero indicate when the carrier bag in the row already provides a 
better performance than the LDPEavg reference bag. 

 
LDPEavg, EOL3 
Min - Max ranges, all impact categories 
EOL1 
EOL2 
EOL3 
LDPEavg 
(-1, 1) 
(0, 5) 
(0, 0) 
LDPEs 
(-1, 2) 
(1, 8) 
(0, 1) 
LDPEh 
(-1, 2) 
(0, 6) 
(-4, 0) 
LDPErec 
(-2, 3) 
(1, 12) 
(-1, 2) 
PP 
(-7, 38) 
(2, 52) 
(-6, 37) 
PPwov 
(-6, 33) 
(1, 45) 
(-5, 32) 
PETrec 
(-1, 95) 
(5, 84) 
(0, 96) 
PETpol 
(0, 35) 
(1, 28) 
(1, 35) 
BP 
(0, 41) 

(-2, 42) 
PAP 
(0, 42) 
(0, 77) 
(-1, 43) 
PAPb16 
(0, 42) 
(1, 77) 
(0, 43) 
                                                           
15 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
16 The highest value for bleached paper was increased to be equal to the value for unbleached paper 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   125 

 
COTorg 
(150, 20000) 

(150, 20000) 
COT 
(50, 7100) 

(50, 7100) 
COM 
(-20, 870) 

(-20, 870) 
Table C16. Calculated number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3). The Table shows a (min, max) range obtained considering 
the minimum and maximum number calculated for each bag for all impact categories, 
without ozone depletion. Numbers lower than zero indicate when the carrier bag in the 
row already provides a better performance than the LDPEavg reference bag. 

 
LDPEavg, EOL3 
Min - Max ranges, all impact categories w/o ozone depletion 
EOL1 
EOL2 
EOL3 
LDPEavg 
(-1, 1) 
(0, 5) 
(0, 0) 
LDPEs 
(-1, 2) 
(1, 8) 
(0, 0) 
LDPEh 
(-1, 2) 
(0, 6) 
(-4, 0) 
LDPErec 
(-2, 3) 
(1, 12) 
(-1, 2) 
PP 
(-7, 38) 
(2, 51) 
(-6, 37) 
PPwov 
(-6, 33) 
(1, 44) 
(-5, 32) 
PETrec 
(-1, 95) 
(5, 84) 
(0, 96) 
PETpol 
(0, 35) 
(1, 28) 
(1, 35) 
BP 
(0, 41) 

(-2, 42) 
PAP 
(0, 42) 
(0, 77) 
(-1, 43) 
PAPb 
(0, 30) 
(1, 72) 
(0, 28) 
COTorg 
(150, 3800) 

(150, 3800) 
COT 
(50, 1400) 

(50, 1400) 
COM 
(-20, 740) 

(-20, 740) 
Table C17. Average number of primary reuse times for the carrier bags in the rows, 
associated to the disposal options in the columns, necessary to provide the same envi-
ronmental performance of the average LDPE carrier bag, reused as a waste bin bag 
before incineration (EOL3). The average number was obtained averaging the results of 
the carrier bags in the rows for each impact category. 

 
LDPEavg, EOL3 
Average number of reuse times 
EOL1 
EOL2 
EOL3 
LDPEavg 



LDPEs 



LDPEh 



LDPErec 



PP 
13 
21 
12 
PPwov 
11 
18 
10 
PETrec 
26 
30 
25 
PETpol 



BP 



PAP 
12 
18 
11 
PAPb 
10 
16 

126   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
COTorg 
2376 

2375 
COT 
840 

840 
COM 
226 

225 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   127 

 
 
Appendix D. 
Critical review 
KRITISK REVIEW AF "MILJØMÆSSIGE EFFEKTER AF BRUG AF PLASTBÆREPOSER I 
FORHOLD TIL ALTERNATIVE BÆREPOSER" 
KRISTISK REVIEW AF LCA UDFØRT AF EKSTERN EKSPERT EFTER ISO 14044 
 
Indledning 
Dette kritiske review af livscyklusanalysen "LCA of grocery carrier bags" angående miljøeffek-
terne ved produktion, anvendelse og affaldsbehandling af bæreposer er udført af COWI efter 
den internationale standard ISO 14044, så vidt muligt. 
 
Processen for det kritiske review var som følger: 
  COWI gennemfører første review udført januar 2018. 
  DTU forholder sig til reviewet og laver eventuelle rettelser (ny version af rap-port) februar 
2018 
  COWI forholder sig til rettelserne (nedenstående afsnit og tabel) i det endelige review notat 
februar 2018 
   
Fra COWI blev det kritiske review gennemført af Line Geest Jakobsen og Trine Lund Neidel. 
128   T  
he Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Generelle kommentarer 
Generelle aspekter 
Kommentarer fra COWI, første runde 
Svar på kommentarer fra DTU Miljø 
Kommentarer fra 
COWI, anden runde 

Metoderne anvendt er i overensstem-
Ja, i vid udstrækning. DTU har skrevet, at der er 
According to our understanding of the ISO 14044 standard (document 
√ 
melse med denne internationale stan-
uoverensstemmelse, idet der ikke er foretaget en 
version of 2008, point 6.1), when the results of the LCA are intended to be 
dard 
udveksling med et ekspertpanel undervejs i projektet.  used to support a comparative assertion intended to be disclosed to the 
Som vi forstår standarden, kan det kritiske review 
public, the review should be conducted by a panel of interested parties. 
enten foretages af (1) en ekstern ekspert i slutningen 
Therefore, if the present study is going to be disclosed to the public and 
af processen, som vi gør her, eller (2) af et interes-
used for decision support, the critical review according to point 6.3 should 
sentpanel, der inddrages i løbet af processen. 
apply instead of the critical review by external experts (6.2). The critical 
review by a panel of interested parties was however not budgeted in the 
time constraints of the current study. 
Metoderne er videnskabeligt og teknisk  Vi mener ikke, at det giver en fair sammenligning, at 
Addressed in the report as critical assumptions (Section 3). New results 
√ 
gyldige. 
runde antallet af poser, der skal anvendes til at opfyl-
provided as sensitivity analysis (Section 7). 
de FU, op. Det er forkert at sammenligne f.eks. 2 
We understand the reviewers’ concerns and we have decided to introduce 
(kapacitet: 18,8 liter, 10,5 kg) LDPE simple poser med  a different way of calculating the reference flow for this LCA study in the 
1 LDPE gns. pose (kapacitet 22,4 liter, 12,0 kg). Det 
sensitivity analysis, instead of using the reference flow used in the study 
er jo ikke bestemt, at alle altid køber præcis det, der 
of Edwards and Fry, 2011. We have added a section on critical assump-
kan være i en standard pose. Der vil jo være en stor 
tions where we clearly raise the overcapacity concerns of our reference 
overkapacitet i de fleste tilfælde, hvor der er valgt at 
flow calculation. 
anvende 2 reference-poser - hvis man f.eks. handlede  In the sensitivity analysis, we re-calculated the reference flows as frac-
44 L/24 kg (dobbelt så meget som FU), vil man jo ikke  tions for those bags whose volume and weight holding capacity were 
benytte 4 LDPE virgin simple poser (alternativet), da 3  inferior to those of an LDPE carrier bag with average characteristics (for 
poser er tilstrækkeligt. Vi mener derfor, at der skal 
example, as you suggest, 1.2 carrier bags for simple virgin LDPE instead 
sammenlignes med det antal (ikke afrundet) poser der  of 2). The carrier bags affected by this reference flow change were virgin 
skal anvendes når begge krav (volumen og vægt 
LDPE simple, LDPE recycled, biopolymer, paper, and organic cotton. For 
kapacitet) er opfyldte. Dette vil betyde, at der f.eks. for  these bags, the change of reference flow resulted in a lower magnitude of 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   129 

 
“LDPE virgin simple” vil skulle sammenlignes med 1,2  the results. 
poser i stedet for 2 (22,4/18,8=1,2). 
As far as the overall results are concerned: 
the most preferable end-of-life option for each carrier bag was not affected 
the bags providing the lowest impacts for each impact category were still 
paper, biopolymer and virgin LDPE carrier bags – the best performance 
among virgin LDPE carrier bags was provided by simple virgin LDPE bags 
the number of reuse times decreased for the bags affected by the refer-
ence flow change. For simple virgin LDPE, recycled LDPE, biopolymer 
and paper bags, the calculated number of reuse times was similar to the 
previous results. Biopolymer and paper presented lower number of reuse 
times across all impact categories. Organic cotton presented a havened 
number of reuse times: around 80 times for climate change and more than 
10000 for all impact categories. 
The results of this sentivity analysis showed that the choice of reference 
flow influenced heavily the carrier bag with higher impacts connected to 
production and with a lower volume than expressed in the functional unit. 
We have added a dedicated section on carrier bag design where we pro-
vided comments on the influence of the design of the carrier bags on the 
results. 
Anvendte data er hensigtsmæssige og 
Hvad menes med polyester. Polyester dækker over 
Corrected. 
√ 
fornuftige 
flere polymerer, bl.a. PET, så hvad menes med denne  We had used a generic polyester production data from Ecoinvent. After 
posetype? 
your comment, we verified the polymer material of the surveyed polyester 
bags, which showed to be virgin PET (We have re-modelled the results for 
this carrier bag type using an Ecoinvent production dataset for virgin PET 
because a dataset for “polyester PET” was not available. Results have 
been updated throughout the report and executive summary. 
Uddyb beskrivelsen af biopolymer, linje 555 og frem. 
Added (now line 645) 
√ 
Er det en komposterbar pose?  
Yes, the bag is a compostable bag. (+ design considerations on effective 
compostability) 
Vurderingsrapporten er gennemskuelig  Det danske resumé har brug for en kritisk gennem-
We have done a full readthrough of the Danish Summary. 
√ 
og konsekvent 
læsning ift. sprog. F.eks. står der organisk i stedet for 
130   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
økologisk, og ozonforstyrrelse i stedet for ozonned-
brydning. 
Småting 
Det er svært at huske hvad scenariebetegnelserne 
Changed. 
√ 
står for. Kunne man overveje forkortelser, der i højere  Please see the new list of abbreviations for the carrier bag scenarios..  
grad er forbundet til materialetype? 
I resuméerne kan der i linje 120/270 stå de fire LDPE  Added. 
√ 
pose typer, der er undersøgt 
In the Danish and English summaries, we added a brief description of the 
 
four LDPE carrier bags investigated. 
“Low-density polyethylene (LDPE), 4 types: an LDPE carrier bag with 
average characteristics, an LDPE carrier bag with soft handle, an LDPE 
carrier bag with rigid handle and a recycled LDPE carrier bag.” 

Der er forskel i tabellerne IV i de to resumé. 
Corrected. 
√ 
Pilen i figur I (dansk resume) fra Produktion af embal- Corrected 
√ 
lage materiale er vendt forkert. 
Linje 463 under lightweight plastic carrier bags - 
Corrected. 
√ 
skriftstørrelsen er forskellig. 
Table 2, linje 600, antal LDPE poser simple og rigid 
Corrected. 
√ 
handle adderer ikke til 23. 
The numbers erroneously referred to a previous version of the Table, 
where there was no distinction between virgin LDPE carrier bags (in total 
23) and recycled LDPE carrier bags (in total 3). 
Hvorfor står der “no” i table 3, linje 740 for vægt kapa- Corrected. 
√ 
citet for flg. LDPE recycled, rigid handle, biopolymer 
Yes, the recycled LDPE carrier bag with rigid handle has a weight holding 
og paper - de har en kapacitet på 12 kg? 
capacity of 12 kg. The “No” erroneously reported was a typo.  
We decided to report the reference flow for simple and rigid handle recy-
cled LDPE carrier bag in Table 3 for completeness, but in the end we 
considered only a scenario with a recycled LDPE carrier bag with average 
characteristics, due to the low number of recycled LDPE carrier bags 
encountered in the survey, and due to the lack of data for recycled LDPE 
carrier bag production. 
Table 5, linje 816, i “Human toxicity, non-cancer ef-
Corrected. 
√ 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   131 

 
fects” står der CTUh/PE/year - skal der ikke bare stå 
The impact assessment unit was in fact CTUh, CTUh/PE/year refers to 
CTUh? 
the normalized unit, which was not used in the present study and was 
erroneously reported in Table 5. 
Anvend samme rækkefølge for poserne i alle tabeller.  Corrected. 
√ 
Kan der komme et tal efter komma i Figure 16 i y-
Corrected. 
√ 
aksen? 
Now Figure 16 provides one digit after the comma. 
Kan det i Table 15 indikeres, hvilken påvirkningskate-
Added in the text. 
√ 
gori der giver udslag i det største antal genbrug? I har  We added in the discussion of the results that for some carrier bags the 
taget "den værste" kategori, men det er væsentligt for  number of reuse times was rather homogeneous among impact catego-
tolkningen, at man kan se, om det er generelt 
ries, for other carrier bags the number of reuse times was mainly provided 
højt/lavt, eller skyldes stor spredning imellem impact 
by few or just one impact category (as in the case of organic cotton, 
kategorierne (evt. pga. varierende datakvalitet).  
where the number of reuse times strongly depends on ozone depletion 
results). 
This could be related to data (in general, whether it has low quality or not), 
but also to the structure of the model (for example, the resulting climate 
change score from the interaction of carrier bag material production data, 
input specific emissions and energy recovery). For the organic cotton bag, 
the ozone depletion results were governed by cotton production data. 
Det ville være dejligt med billeder af de forskellige 
Provided. 
√ 
posetyper ved beskrivelserne af poserne i afsnit 2, så  Photos have been provided in order to complement the description of the 
man i højere grad får et indtryk af hvilke poser, der er  surveyed carried bags in Section 2. (Figures 1-9). We had initially decided 
tale om. 
not to include the photos in order not to show the brand names on the 
carrier bags. The Miljøstyrelsen agrees with your request, but suggested 
to provide examples of the carrier bags instead of photos of the surveyed 
carrier bags, which would display the names of the retailers. 
 
 
132   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
Tjekliste 
Følgende skal være dækket af tredjepartsrapporten 
Aspekter fra ISO 14044 
Kommentarer fra COWI, første runde 
Svar på kommentarer fra DTU Miljø 
Kommentarer fra CO-
WI, anden runde 

Generelle aspekter 
 
 
 
livscyklusvurderingens opdragsgiver, udøveren af 
√ 
 
 
livscyklusvurderingen  
rapportens dato 
√ 
 
 
erklæring om, at vurderingen er udført i overens-
√ 
 
 
stemmelse med kravene i ISO 14044 
Vurderingens formål 
 
 
 
grundene til at foretage vurderingen 
√ 
 
 
dens påtænkte anvendelser 
√ 
 
 
målgrupperne 
√                                                                                                          
 
              
 
erklæring om, hvorvidt vurderingen påtænkes at un-
√   
 
 
derstøtte sammenlignende påstande, som er beregnet 
til offentliggørelse 
Vurderingens afgrænsning 
 
 
 
funktion, herunder 
 
 
 
erklæring om ydeevneegenskaber 
√ 
 
 
eventuel udeladelse af yderligere funktioner i sam-
√ 
 
 
menligninger 
funktionel enhed, herunder 
 
 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   133 

 
overensstemmelse med formål og afgrænsning 
Nej, se nedenfor 
 
 
definition 
Der står intet omkring produktion, distribution og 
Corrected. 
√ 
affaldsbehandling. 
The functional unit now specifies more details regarding 
production, distribution and waste management. Further 
details have been added in the text following the functional 
unit definition. 
“Carrying one time grocery shopping with an average vol-
ume of 22 litres and with an average weight of 12 kilograms 
from Danish supermarkets to homes in 2017 with a (newly 
purchased) carrier bag. The carrier bag is produced in Eu-
rope and distributed to Danish supermarkets. After use, it is 
collected by the Danish waste management system.” 

resultat af ydeevnemåling 
√ 
 
 
systemgrænse, herunder 
 
 
 
udeladelser af livscyklusfaser, processer eller databe- I EoL scenarierne 1 og 3 er der i boksene der star-
Added collection box in Figures 14-16. 
√ 
hov 
ter i linje 1008 samt 1029 ikke indtegnet indsamling  Yes, collection was included in the study for cardboard 
- hvorfor ikke? Det er vel medtaget ikke? 
packaging collection and for the collection of the carrier 
bags for the different end-of-life scenarios. We have added 
more details in Figures 14-16 by specifying “collection” in 
the processes. We have provided the same colours as Fi-
gure 13. 
kvantificering af energi-og materialeinput og –output 
Mht. anvendelse af produktion af jomfruelig LDPE til  Added as sensitivity analysis. 
√ 
at repræsentere den genanvendte LDPE; det ser ud  The reduced impacts connecetd to LDPE production have 
til at der er ret stor forskel for PET, hvilket må for-
lowered the impacts for recycled LDPE carrier bags. LDPE 
modes for LDPE også. Jeg vil foreslå at lave en 
recycled resulted the carrier bag with the lowest associated 
følsomhedsanalyse, hvor man f.eks. anvender 25 %  impacts for particulate matter, photochemical ozone for-
mindre udledninger. 
mation, terrestrial and freashwater eutrophication. The cal-
culated number of reuse times decreased by 1 unit.  
We observed in the discussion of the sensitivity analysis 
that the sensitivity performed on the reference flow provided 
larger variations in the results for the calculated number of 
134   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
reuse times for this type of carrier bag. 
Hvorfor er der anvendt forskellig ekstern process for  Yes, we have used different external processes for the 
√ 
produktion af LDPE til bæreposen og affaldsposen?  production of the bags.  
(s. 85) 
First of all, for LDPE carrier bags we had some data regard-
ing the production of the carrier bag, for example energy 
and materials required per kg of produced carrier bag. For 
the waste bin bag, we did not have such data. For this rea-
son, we decided to use the Ecoinvent dataset for the pro-
duction of LDPE packaging, which included extrusion of 
LDPE and ancillary materials consumption.  
Secondly, the waste bin bags surveyed for this study were 
thinner and of a visible lower quality compared to the LDPE 
carrier bags. The Ecoinvent process chosen for waste bin 
bags production presented slightly lower overall impacts 
compared to the modelled one for the production of LDPE 
carrier bag. This was considered in line with the intended 
use of the bag: the LDPE carrier bags are intended for mul-
tiple uses, while the waste bin bag is intended for single 
use. 
During the modelling phase, we performed a sensitivity 
analysis and modelled the waste bin bag exactly as the 
LDPE carrier bag, but according to the mass of the waste 
bin bag. The environmental impacts resulted similar to the 
chosen Ecoinvent process for waste bin bags. 
Finally, selecting a process with slightly lower impacts for 
the production of the waste bin bag allows being more con-
servative regarding the results, since lower benefits will 
arise from the saving of a waste bin bag.  
Burde produktion af komposit-posen ikke bestå af 
Yes, the composite bag was modelled as a combination of 
√ 
de andre dele end jute også, PP og bomuld? I har 
the three materials: PP, jute and cotton. Based on the sur-
allerede data for disse processer, så der skal bare 
vey, we assumed 80% jute, 10% PP and 10% cotton.  
en fordeling af de tre materialer til. 
This proportion was present in the description of the com-
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   135 

 
posite bag scenario in Section 4. We added these details 
also in the assumptions section. 
Er der i produktion af biopolymer medtaget karbon-
No, to our understanding the Ecoinvent dataset for the pro-
√ 
lagring? 
duction of starch-complexed biopolymer does not take into 
account carbon storage. 
We added this detail in the description of the biopolymer 
carrier bag scenario, Section 4. 
Antagelsen om, at der er det samme tab i sortering  We did not have actual data for recovery efficiencies and 
√ 
før genanvendelse for jomfruelig LDPE og genan-
residues occurring during recycling for recycled polymers, 
vendt LDPE i genanvendelsesprocessen kan disku- we only had data for recycling of virgin polymers. Therefore, 
teres (linje 1065). For genanvendt PET er tabet 
we assumed that the efficiency was the same based on 
højere end for ikke genanvendt LDPE (24,5% for 
material type (ex/ same for all LDPE types).  
genanvendt PET sammenlignet med 9,7% for 
Of course the recovery efficiencies could be lower if the 
LDPE). Tabet er måske i højere grad afhængigt af 
quality of the polymer sent to recycling was lower, but we 
hvorvidt der er tale om genanvendt eller virgint plast  did not have data to substantiate assumptions on lower 
og ikke polymer-afhængigt? Vi mener, at tabet for 
recovery rates and higher residues production.  
genanvendt LDPE er sat for lavt.  
In any case, even with high recovery rates and low amount 
of residues produced, EOL2 resulted rarely among the pref-
erable end-of-life options. 
These assumptions are now specified in Section 3. 
Antagelse af at rest-produkter fra sortering til gen-
Specified in the text. 
√ 
anvendelse af plast- og papirposer foregår i Dan-
Yes, recycling does not occur in Denmark.  
mark – det sker ikke i dag. Bør det ikke antages, at  The cardboard packaging is assumed to be collcted in 
det sker i Tyskland eller Sverige – og dermed ikke 
Denmark, but then transported abroad (Europe) for sorting 
går til forbrænding i DK? Betyder det ikke det store,  and recycling. The same is assumed for the collection for 
så argumenter for det. 
recycling for all the separately collected fractions, which are 
transported abroad (Europe), sorted and recycled. 
In both cases, residues are incinerated in an average Euro-
pean incineration process (which was modelled with Ecoin-
vent processes) and are not assumed to be incinerated in 
Denmark. 
136   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
The location of the recycling plat was not disclosed by the 
project partners, so we assumed a general transportation 
distance of 2000 km (including also southern Europe) and 
used Ecoinvent processes based on Europe when possible. 
antagelser vedrørende elektricitetsproduktion 
I valgt en fremtidig marginal for elektricitet - Er dette  Specified in the text. 
√ 
korrekt når nu FU siger 2017? 
Yes, the functional unit is based on carrier bags available 
for purchase in Danish supermarkets in 2017. However, 
since the study is assumed to support decisions that will 
occur in a 10 year period, using a future marginal energy is 
assumed to well represent the effects in the future waste 
management system.  
Moreover, this LCA study is part of a series of assessments 
conducted by DTU for the Miljøstyrelsen in the end of 2017 
regarding decision support for future waste management 
options. All the assessments are based on the same mar-
ginal energy choices. 
afskæringskriterier for den indledende/første medta-
 
 
 
gelse af input og output, herunder 
beskrivelse af afskæringskriterier og antagelser 
√ 
 
 
udvælgelsens indvirkning på resultater 
Savner en kommentar på hvad udelukkelse af gen-
Specified in the text (line 1029-1038). 
√ 
anvendelse af tekstilerne og biopolymeren betyder.  Excluding recycling for textiles and biopolymers means that  Vi kan ikke helt følge 
carrier bags of these materials will only be tested for EOL1 
argumentationen for ikke 
and EOL3. Considering recycling feasible would mean al-
at medtage genanven-
lowing the recovery of these materials through separate 
delse af tekstiler, da 
collection and re-processing, therefore lowering the impacts  indsamlingsmetoden (at 
connected to the production of the carrier bags. Recycling of  den ikke foregår i kom-
textiles was not taken into account since it mainly occurs 
munalt regi) ikke skulle 
outside the Danish waste management system, for example  påvirke genanvendelsen. 
via charity organizations or through return schemes at re-
Vi tænker mere, at ar-
tailer shops. The extent of recovery of materials can be 
gumentet skal være, at 
extremely variable according to the specific collection se-
der kun i ringe grad på 
lected. Regarding biopolymer carrier bags, which are com-
nuværende tidspunkt 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   137 

 
postable starch-biopolymer bags, we did not include materi- sker materialegenan-
al recovery through composting, since biopolymer bags are  vendelse af tekstiler, 
currently sorted out from organic waste management plants.  men primært genbrug, 
 
som ikke er så relevant i 
denne evaluering. 
 
 
medtagelse af afskæringskriterier for masse, energi 
Ikke specifikt uddybet. 
Corrected. 
√ 
og miljø 
We have re-written the system boundaries section, provid-
ing a better description of the inputs and outputs. 
Livscykluskortlægning 
 
 
 
dataindsamlingsprocedurer 
√ 
 
 
kvalitativ og kvantitativ beskrivelse af enhedsproces-
Der savnes beskrivelse af f.eks. om processerne 
Specified in the text (line 1079). 
√ 
ser 
inkluderer biomassebegrænsning. 
Biomass was not considered a limited resource. 
kilder til udgivet litteratur 
Der savnes en kilde på de 30% mindre udbytte fra 
Added. 
√ 
økologisk bomuldsproduktion (s. 35, linje 862) 
The yield of organic cotton farming was assumed 30 % 
lower than conventional cotton. For the modelling, this im-
plies that 30 % more impacts are considered for the produc-
tion of organic cotton than conventional cotton. The yield 
was found to vary in the literature between 20 % and 40 % 
and according to the geographical location (Forster et al., 
2013). Since the Ecoinvent dataset for cotton production is 
not linked to a specific geographical location, 30 % was 
considered as average value. The selected value influences 
the contribution of the production process to the overall 
impacts related to the organic cotton carrier bag. 
beregningsprocedurer 
√ 
 
 
validering af data, herunder 
 
 
 
datakvalitetsvurdering 
Mangler, f.eks. vurderes det ikke, hvad det betyder,  Added. 
√ 
at nogle processer er globale i stedet for europæi-
In Section 3, we have provided a discussion on data re-
138   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
ske. 
quirements, assumptions used to provide missing data, and 
critical assumptions. 
In Section 5, we have provided a discussion of the results in 
the light of data quality and assumptions. 
Critical assumptions have been tested as sensitivity analy-
sis and discussed in Section 7. 
Among other data issues, we have specifically discussed 
the influence on the results of the choice of European ver-
sus global data. 
behandling af manglende data 
√ 
 
 
følsomhedsanalyse til raffinering af systemgrænsen 
1. "Choice of reference flow" – lidt svært at forstå 
Specified in the text and in the sensitivity analysis. 
√ 
hvordan antallet af poser er beregnet. Kan det be-
The reference flow for each bag subtype in Table 3 was 
skrives bedre, hvordan den nye ydeevne (antal 
calculated taking into consideration both volume and weight 
genstande) relateres til de anvendte ydeevner i 
holding capacity as conditions that had to be fulfilled at the 
resten af studiet (bæreevne og volumen). 
same time. This means that, for each carrier bag, if the 
volume or/and the weight holding capacity were lower than 
the ones specified in the functional unit, we assumed that 
the customers would need to buy two bags instead of one in 
order to comply for the same functionality (a grocery shop-
ping of the volume of 22 litres and/or a weight of 12 kilo-
grams). When a bag was required two times, it was mod-
elled by multiplying by two the average weight and volume 
provided in Table 2. In the cases of biopolymer and paper 
carrier bags, the weight holding capacity surveyed was in 
average compliant with the virgin LDPE carrier bag, but 
provided the highest variance between the samples. For 
example, the weight that these types of bags were capable 
of holding varied greatly in the tested samples, especially if 
the items placed in the bags for the survey had sharp an-
gles, which tore the bags much more easily than for other 
carrier bag types (Alonso Altonaga, 2017). For these rea-
sons, the weight holding capacity for the reference flow was 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   139 

 
considered not respected, and that two bags would be re-
quired to carry the same weight. 
We have decided to replace the sensitivity analysis that 
used the reference flow of the UK study performed by 
Edwards and Fry (2011) with a sensitivity analysis that cal-
culated the “fractions” for the carrier bags that required 
rounding to two bags in order to provide for the functional 
unit.  
In the sensitivity analysis, we provided the formula used to 
re-calculate the reference flow. 
Table 17: Er værdierne for Biopolymer EOL3 kor-
The sensitivity analysis results presented in the previous 
√ 
rekte? De virker lave ift, hvor meget EOL1 værdier-
version of the report (old Table 17) is not present anymore. 
ne stiger. 
Anyhow, the results for BP, EOL3 were correctly lower than 
EOL1: this non-fossil carbon and lightweight carrier bag 
provides larger advantages when used for substituting a 
virgin LDPE waste bin bag. 
3. “Different way to calculate primary reuse” (linje 
Agree. 
√ 
1553 og frem) giver ingen mer-værdi. Det er jo bare  We have added a sentence in the section “modelling of 
om man regner på antal primær genbrug eller antal  primary reuse”. 
gange man bruger posen i alt. Skriv 1-2 linjer om 
Edwards and Fry (2011) performed a similar assessment, 
dette i valg af metode i stedet for. 
but calculating the number of reuse times simply performing 
a ratio between the carrier bag alternative and the reference 
carrier bag. Such calculation differs from the method adopt-
ed for the present study by providing the number of reuse 
times, instead of the number of times the bag is used in total 
(Eq. 2). 

Gentager, at vi anbefaler en følsomhedsanalyse, 
Added. Please see point 3.3b above. 
√ 
hvor man f.eks. anvender 25 % mindre udledninger 
for produktion af jomfruelig LDPE til at repræsentere 
den genanvendte LDPE. 
allokeringsprincipper og –procedurer, herunder 
 
 
 
140   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
dokumentation og begrundelse for allokeringsproce-
Jeg kan ikke læse om der er anvendt biomassebe-
Added (please see above comment 4.2). 
√ 
durer 
grænsning eller ej. 
ensartet anvendelse af allokeringsprocedurer 
√ 
 
 
Vurdering af miljøpåvirkninger i livscyklus, hvis an-
 
 
 
vendt 
LCIA-procedurer, beregninger og resultater af vurde-
√ 
 
 
ringen 
begrænsninger af LCIA-resultater, som vedrører livs-
√ 
 
 
cyklusvurderingens formål og afgrænsning 
sammenhængen mellem LCIA-resultater og formål og  I skriver i linje 677 at "Then, the calculated number 
Rephrased (now line 792) 
√ 
afgrænsning 
of reuse times based on environmental performance  “Then, the calculated number of reuse times based on envi-
was compared to the expected lifetime of the bag 
ronmental performance is intended to raise the discussion 
and used as a basis for discussion." – Dette synes 
among the stakeholders on the effective expected lifetime of 
jeg ikke, at jeg kan se af LCIA/diskussionen. Der er  each carrier bag.” 
ingen kvantitative levetider på poserne. 
sammenhæng mellem LCIA-resultaterne og LCI-
√ 
 
 
resultaterne 
påvirkningskategorier og kategoriindikatorer under 
√ 
 
 
betragtning, herunder den logiske begrundelse for, at 
de er valgt, herunder antagelser og begrænsninger 
beskrivelse af eller henvisning til alle anvendte karak-
√ 
 
 
teriseringsmodeller, karakteriseringsfaktorer og meto-
der, herunder antagelser og begrænsninger 
beskrivelse af eller henvisning til alle anvendte værdi-

 
 
baserede valg i forhold til påvirkningskategorier, ka-
rakteriseringsmodeller, karakteriseringsfaktorer, nor-
malisering, gruppering, vægtning og, andre steder i 
LCIA-en, en begrundelse af deres anvendelse og 
påvirkning på resultaterne 
en erklæring om, at LCIA-resultaterne er relative ud-
Mangler 
Added both in the LCIA methods description and in the 
√ 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   141 

 
tryk, som ikke forudsiger påvirkninger på kategori-
section providing the characterized results. 
end-point, eller overskridelser af tærskelværdier, sik-
kerhedsmarginer eller risikoniveauer og, når medtaget 
som en del af livscyklusvurderingen (LCA), også 
en beskrivelse af og begrundelse for definitionen og 
√ 
 
 
beskrivelsen af eventuelle nye påvirkningskategorier, 
kategoriindikatorer eller karakteriseringsmodeller 
anvendt til LCIA'en 
en fremstilling af og begrundelse for eventuel gruppe-
na 
 
 
ring af påvirkningskategorierne 
eventuelle yderligere procedurer, som omregner indi-
na 
 
 
katorresultaterne, og en begrundelse for de valgte, 
referencer, vægtningsfaktorer etc. 
en eventuel analyse af indikatorresultaterne, fx føl-
√ 
 
 
somheds- og usikkerhedsanalyse eller anvendelse af 
miljødata, herunder eventuel betydning for resultater-
ne 
data og indikatorresultater fra før en eventuel normali- √ 
 
 
sering, gruppering eller vægtning skal gøres tilgænge-
lige sammen med de normaliserede, grupperede eller 
vægtede resultater 
Livscyklusfortolkning 
 
 
 
resultaterne 
Kan det specificeres yderligere, hvad det f.eks. er i 
Added contribution analysis for the production part for each  √ 
materialeproduktion der betyder mest for udlednin-
carrier bag type (Tables 13-21). 
gerne? 
Kunne man ud fra konklusionerne om, hvor mange 
We have decided not to do this, as it will have a part as-
√ 
gange poserne skal genanvendes for at matche 
sumptions on average life times. We will leave this to the 
miljøeffekten for referencen, for hver posetype vur-
EPA in their choice on how they wish to use the report. We 
dere, hvorvidt dette er realistisk? Evt. med en farve- have commented further on the importance to do such a 
skala (grøn=realistisk, gul=måske og rød=ikke reali- realism check. 
stisk)? Som støtte til beslutningstagere. Evt. i resu-
142   The   
Danish Environmental Protection Agency / LCA of grocery carrier bags 

 
meet. 
antagelser og begrænsninger, som vedrører fortolk-
Kan der siges noget om, hvad betyder, det at nogle  Added.  
√ 
ningen af resultater, både metodik- og datarelaterede   af materialeproduktionerne er globale, andre euro-
We have added a specific paragraph on assumptions and 
pæiske og nogle andre dele af verden? 
critical assumptions.  
In particular, with respect to dataset referring to differen 
geographical locations:  
“In general, market and global datasets provided slightly 
higher emissions than production datasets in specific geo-
graphical locations. Therefore, the carrier bags for which 
only production datasets were available are likely to have 
slightly lower emissions than using market datasets. Assum-
ing that the carrier bag manufacturers retrieve materials and 
energy from the market, our preference was always for the 
market datasets. When not available, we used production 
datasets, preferably for Europe.” 

datakvalitetsvurdering 
Mangelfuld 
Added a discussion of the results with respect to the high-
√ 
lighted data limitations and assumptions. 
fuld gennemskuelighed, hvad angår værdibaserede 
√ 
 
 
valg, logiske begrundelser og ekspertvurderinger 
Kritisk review 
 
 
 
navn på og tilhørsforhold for de personer, der udfører  Navne skal tilføjes 
 
√ 
review 
redegørelse fra kritisk review 
√ 
 
 
svar på anbefalinger fra det kritisk review 
Kommer senere 
 
√ 
 
 
 
The Danish Environmental Protection Agency / LCA of grocery carrier bags   143 

  
Life Cycle Assessment of grocery carrier bags 
 
 
 
Currently, Danish supermarkets provide multiple-use grocery carrier bags of different 
materials (such as plastic, paper and cotton) that are designed for multiple uses. In 
order to compensate the environmental impacts connected to the production of the 
bags, these multiple-use carrier bags need to be reused a number of times.  
 
This Life Cycle Assessment study examined the environmental impacts connected to 
the production, distribution, use and disposal of multiple-use grocery carrier bags 
available for purchase in Danish supermarkets for a range of environmental indica-
tors. The study identified which carrier bags provide the lowest impacts for their pro-
duction and which is the optimal disposal option for specific carrier bag materials. 
The goal of the study was quantifying the required minimum number of reuse times 
for each of the multiple-use carrier bags based on their environmental performance. 
The Danish Environmental  
Protection Agency 
Haraldsgade 53 
DK-2100 København Ø 
 
www.mst.dk