BioLPG is a drop-in gaseous fuel produced from biological sources, and potentially from renewable electricity and CO2.

BioLPG is a cost-effective solution to the decarbonisations in segments such as, but not limited to, transport as well as industry, heat generation and cooking in rural areas. Launched in 2018, it is available on the European market in small, but growing, quantities.

It is identical in use and performance to conventional LPG and gives today up to 80% lower carbon footprint. In the long run, bioLPG has the potential to become carbon neutral depending on the development of new production processes.

BioLPG is a cost-effective solution to the decarbonisations in segments such as, but not limited to, transport as well as industry, heat generation and cooking in rural areas. Launched in 2018, it is available on the European market in small, but growing, quantities.

Today only one production process is commercialised in Europe:

bioLPG as a co-product of hydrotreated vegetable oils (HVO) diesel or its variation – hydprocessed esters and fatty acids (HEFA) resulting in Sustainable Aviation Fuel.

The European HVO/HEFA capacity alone would not be enough to supply bioLPG volumes to meet the industry’s commitment by 2050.

Additional production pathways are needed to deliver bioLPG volumes required by the industry.

There are several other promising technologies available to produce bioLPG. But these pathways are not fully mature and commercially available today. They still require time and resources to grow from the research and development or demonstration scale. To further develop the technologies to produce bioLPG, a predictable and attractive investment climate is needed.

The LPG industry’s concern is exacerbated by a general lack of awareness amongst producers as well as policymakers about the role bioLPG can play in the energy sector transition.
The ambition of the European Union is to be climate neutral by 2050. The European LPG industry is committed to support this ambitious goal.

Our industry truly believes that LPG and bioLPG, as clean-burning, versatile, and resource-efficient gaseous fuels are perfectly placed to immediately help to reach these goals especially in rural areas and in road transport.

Nowadays bioLPG is already available in small, but growing, quantities. We are ready to continue dialogue with European and national policymakers, sustainable liquid fuel and biogas producers as well as other stakeholders across Europe to develop the necessary and stable policy framework for new investments in production facilities to increase bioLPG volumes.

This report offers a potential pathway for the European LPG market to become 100% renewable by 2050. To get there, several critical policy interventions and industry actions will be necessary:

• BioLPG must be recognised within European policy frameworks and regulations
• European and national policies should offer incentives for consumers to switch to LPG in the short-term and bioLPG in the future
• European and national policies should provide incentives for low-carbon liquid fuel and renewable gas producers to produce and valorise bioLPG
In Europe

LPG Today

LPG is a co-product of...

Natural Gas

Oil Production

and thus resource efficient by its very nature

60% of all LPG produced globally derives from natural gas extraction

Energy-users of LPG

Road Transport 33%

Industrial power & heat generation 19%

Residential Heating 48%

Road transport

Residential heating, industrial power and heat generation

Improving air quality with LPG

LPG cars have almost no pollutant emissions. They emit 98% less NOx than diesel cars and 90% less PM than gasoline cars in real driving conditions**.

Boilers using LPG emit 80-99% less PM and 50-75% less NOx, than solid and liquid fuels boilers (such as coal, heating oil, peat).

Reducing carbon emissions with LPG

LPG well-to-wheel carbon intensity as in the Fuel Quality Directive is also significantly lower than diesel (-23%) and petrol (-21%).

LPG is a lower carbon alternative to liquid and solid fuels for combustion purposes. Switching from an oil or coal boiler to an LPG one can reduce emissions respectively by 25% and 50%.

40% of European LPG demand is used as feedstock by chemical industry

Measuring emission performance of Autogas cars in Real Driving Conditions (2016) Liquid Gas Europe
ONE OF THE PATHWAYS FOR THE INDUSTRY TO OFFER FURTHER EMISSION REDUCTION IS TO GROW THE SUPPLY OF BIOLPG.

In 2018, it was estimated that consumption of branded bioLPG, a product available on the market explicitly labelled as such, was at about 100 kilotonnes a year.*

The rest of the produced bioLPG, another 100 kilotonnes a year, is used today internally as a process fuel. Sometimes bioLPG is also put on the market without being labelled as such.

Nevertheless, the available volumes are still growing. The following operators are currently producing bioLPG in Europe:

• ENI (ITALY)
• GLOBAL BIOENERGIES (FRANCE)
• NESTE (THE NETHERLANDS)
• PREEM (SWEDEN)
• REPSOL (SPAIN)
• TOTAL (FRANCE)

BIOGAS CONVERSION TO BIOLPG IS POTENTIALLY ATTRACTIVE TO ‘STRANDED’ BIOGAS PRODUCERS

Less than 1% of biogas produced in Europe is injected to the gas grid. Majority of biogas is currently produced in remote locations which are unlikely to make biomethane injections in the future. It is reasonable to presume that significant amounts of biogas will still be stranded from the grid.

Conversion to bioLPG and distribution using the existing LPG infrastructure would in many cases be most attractive economically, if a biogas-to-bioLPG process were commercialised. This process is being pursued by several technology suppliers.

IN MOST CASES, BIOLPG IS A CO-PRODUCT OF SEVERAL TECHNOLOGIES.

Some of them are still at an early stage of development in Europe. Therefore, Liquid Gas Europe looks into a potential pathway for the European LPG market to become 100% renewable by 2050.

NB. The above refinery capacity figures represent capacities for HVO biodiesel. Most of these plants produce bioLPG as a co-product at approx. 5-7% by weight of the biodiesel output. These capacities reflect the rated amount that a given plant can manufacture per year, actual production can be lower.
LPG AND BIO LPG FOR THE EU GREEN DEAL

Liquid Gas Europe sees a significant role for the European LPG industry in meeting the EU Green Deal ambition and achieving climate neutrality by 2050.

Our renewable pathway will help European and national policymakers understand the potential of bioLPG for decarbonisation of off-grid residential heating, local businesses and industries as well as for road and maritime transport.

The gradual, seamless transition to bioLPG can be done in existing appliances without any additional costs of modifications.

<table>
<thead>
<tr>
<th>POLICY</th>
<th>BENEFITS</th>
<th>ADDED VALUE OF BIO LPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Sector Integration Strategy and the Renewable Energy Directive</td>
<td>BioLPG helps reducing carbon footprint of off-grid residential heating, local industrial and rural business. In rural areas, there is a greater role for LPG and bioLPG in gas-powered heating combined with renewable thermal systems and hybrid systems.</td>
<td>Synergies with the decarbonisation of aviation, maritime and road transport fuels.</td>
</tr>
<tr>
<td>Renovation Wave Initiative</td>
<td>BioLPG can turn the existing rural building stock into ‘future-proofed’ homes using readily available, well-established and affordable heating solutions. LPG heating solutions also offer rural communities an opportunity to invest in common small LPG networks.</td>
<td>Scaling up the uptake of solar thermal and hybrid solutions.</td>
</tr>
<tr>
<td>Strategy for Sustainable and Smart Mobility</td>
<td>Autogas (LPG as transport fuel) is Europe’s leading alternative road transport fuel with a good network of filling stations already in place. Converting existing vehicles to Autogas or purchasing a new LPG vehicle is affordable for the consumer, and a cost-effective solution to accelerate road transport emissions reduction efforts.</td>
<td>Improving air quality in cities by tackling emissions from today’s car park.</td>
</tr>
</tbody>
</table>
BIO LPG AND ITS BENEFITS

BioLPG\(^1\) is the commonly used term to describe any molecules of propane and butane\(^2\) produced from biological sources or renewable electricity and CO\(_2\).

To reap the benefits, LPG and bioLPG must be recognised within policy frameworks and regulations. The producers need to be able to secure the necessary feedstock and sustain a stable business model backed by a supportive, clear and predictable EU legal framework.

\(^1\) In some European markets bioLPG is better known as biopropane

\(^2\) BioLPG might also contain molecules of isobutane, propene, and butenes
In most cases, bioLPG is produced as a co-product, a minor output of a multi-product process. All possible synthesis routes to bioLPG (and their development status: conventional and advanced chemical processes, biological processes, and other, are described below. Only one process is already commercial: the HVO diesel production.

Feedstock Technology and Process

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Technology and Process</th>
<th>Product</th>
<th>Secondary Process</th>
<th>Type of LPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetable oil, animal fats, tallow, used cooking oil</td>
<td>Biorefining</td>
<td>Lipid hydrotreatment</td>
<td>HVO diesel jet fuel</td>
<td>Co-product</td>
</tr>
<tr>
<td>Sugar and starch (from cellulose)</td>
<td></td>
<td>Transesterification</td>
<td>FAME diesel glycerine</td>
<td>Glycerine-to-bioLPG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fermentation</td>
<td>OLIGOMERISATION (ALCOHOL-TO-JET)</td>
<td></td>
</tr>
</tbody>
</table>

- **Lignocellulosic biomass**
 - Wood and residues from forestry
 - Waste-wood from industry
 - Agricultural residues (straw, stover, manure)
 - Energy-crops
 - Municipal solid waste (organic fracture)
 - Sewage

- **Pyrolysis**
 - Pyrolysis oil
 - Catalytic cracking

- **Gasification**
 - Thermal gasification of biomass (followed by methanation)
 - Fischer-Tropsch (FT) synthesis of syngas followed by hydrocracking
 - Methanol synthesis of syngas
 - Diesel jet fuel
 - Methanol
 - Methanol-to-gasoline and bioLPG
 - Biogas
 - Upgrading of biogas
 - Oligomerisation of biogas

- **Anaerobic digestion**
 - Biogas
 - Biomethane

- **Power-to-X**
 - FT synthesis of syngas
 - Methanation of CO2 by electrolytically obtained hydrogen
 - Syngas
 - Synthetic methane
 - Synthesis

Renewable LPG

- Renewable electricity, water, and captured CO2
- Power-to-X
TECHNOLOGIES & PROCESS

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>POTENTIAL BIO-LPG YIELD (OF TOTAL FUEL)</th>
<th>TECHNOLOGY/readiness</th>
<th>EXAMPLES OF EXISTING PRODUCERS OR PROJECTS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOREFINING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid hydrotreatment</td>
<td></td>
<td>7%</td>
<td>Demonstration/pilot phase</td>
</tr>
<tr>
<td>Transesterification</td>
<td></td>
<td>70%</td>
<td>Commercial phase</td>
</tr>
<tr>
<td>Fermentation</td>
<td></td>
<td>100%</td>
<td>Pilot phase</td>
</tr>
</tbody>
</table>

PYROLYSIS

Pyrolysis is a process of thermal decomposition in the absence of oxygen. In fast pyrolysis, biomass rapidly decomposes to generate vapours, aerosols, gases, including bio-LPG, and some charcoal. At the next step, after cooling and collection, a dark brown mobile liquid is formed, pyrolysis oil. Through catalysis cracking, it can be transformed into bio-LPG.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>POTENTIAL BIO-LPG YIELD (OF TOTAL FUEL)</th>
<th>TECHNOLOGY/readiness</th>
<th>EXAMPLES OF EXISTING PRODUCERS OR PROJECTS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal gasification of biomass (followed by methanation)</td>
<td></td>
<td>20%</td>
<td>Demonstration phase</td>
</tr>
<tr>
<td>Fischer-Tropsch (FT) synthesis of syngas followed by hydrocracking</td>
<td></td>
<td>5%</td>
<td>Commercial /demonstration phase</td>
</tr>
<tr>
<td>Methanol synthesis from syngas</td>
<td></td>
<td>8%</td>
<td></td>
</tr>
</tbody>
</table>

GASIFICATION

Thermal gasification of biomass (followed by methanation) is a complete thermal breakdown of the biomass particles into syngas, volatiles and ash in an enclosed reactor (gasifier) in the presence of any externally supplied oxidizing agent (air, O2, H2O, CO2, etc.). Syngas through methanation is transformed to SNG, which can be further synthesised to bio-LPG.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>POTENTIAL BIO-LPG YIELD (OF TOTAL FUEL)</th>
<th>TECHNOLOGY/readiness</th>
<th>EXAMPLES OF EXISTING PRODUCERS OR PROJECTS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal gasification of biomass (followed by methanation)</td>
<td></td>
<td>20%</td>
<td>Demonstration phase</td>
</tr>
<tr>
<td>Fischer-Tropsch (FT) synthesis of syngas followed by hydrocracking</td>
<td></td>
<td>5%</td>
<td>Commercial /demonstration phase</td>
</tr>
<tr>
<td>Methanol synthesis from syngas</td>
<td></td>
<td>8%</td>
<td></td>
</tr>
</tbody>
</table>

ANAEROBIC DIGESTION

Anaerobic digestion is a fermentation process, which takes place in a closed airtight digester where organic raw materials such as manure, food waste, sewage sludge and organic industrial waste are converted into biogas and digestate as products.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>POTENTIAL BIO-LPG YIELD (OF TOTAL FUEL)</th>
<th>TECHNOLOGY/readiness</th>
<th>EXAMPLES OF EXISTING PRODUCERS OR PROJECTS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic digestion of biogas</td>
<td></td>
<td>90%</td>
<td>Research & development phase</td>
</tr>
</tbody>
</table>

POWER-TO-X

Power-to-x is a technology that converts captured CO2 and hydrogen made from water by electrolysis using renewable electricity into gas or, after further synthesis, fuel. Both syngas and synthetic methane can be further synthesised to renewable LPG.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>POTENTIAL BIO-LPG YIELD (OF TOTAL FUEL)</th>
<th>TECHNOLOGY/readiness</th>
<th>EXAMPLES OF EXISTING PRODUCERS OR PROJECTS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanation of CO2 by electrolytically obtained hydrogen</td>
<td></td>
<td>10%</td>
<td>Research & development phase</td>
</tr>
<tr>
<td>FT synthesis of syngas</td>
<td></td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Methanol synthesis from syngas</td>
<td></td>
<td>10%</td>
<td>Pilot/demonstration phase</td>
</tr>
</tbody>
</table>
Based on existing, authoritative scenarios and forecasts, Atlantic Consulting for Liquid Gas Europe concludes that the European LPG market can become 100% renewable by 2050.

Potential future demand for LPG
In the next 30 years, the non-chemical European LPG demand will decline by 25-50% from today’s some 16 million tonnes. This drop can be explained by overall trends in European energy demand leading to 2050:

- Final energy consumption will decline by around one-third
- Electrification will rise almost as sharply, mainly displacing liquid fuels in transport and space heating and cooling
- Gaseous fuels’ consumption will decline, but not as sharply as liquids
- Solid fuels will mostly disappear

This forecast does not consider the possibility of LPG displacing competing fuels, thereby gaining market share. However, the European Commission projects heating oil and coal demand in building heating to decline by about 70% from 2020 to 2030. Further decarbonisation of rural commercial and industrial heating needs could be achieved with LPG.

One can imagine that in the short to medium term, LPG could displace heating oil and coal in off-grid homes, businesses, and industries, due to its lower carbon footprint and lower air pollutant emissions. But for consumers to be able to accept and participate in the further energy transition, they need to have access to renewable energy sources at an affordable price.

A 2050 pathway to bioLPG
The future demand, which should equal to 8-12 million tonnes of LPG, can be met entirely by bioLPG produced in Europe from the following sources:

- Nearly 9 million tonnes can come from biorefining, pyrolysis, gasification and power-to-x technologies (operated by refiners)
- Another 3.5 million tonnes can come from the conversion of biogas
- In case one of the above options fails, there are alternatives such as bioLPG supplied by power-to-x plants operated by the gas industry, from glycerine-to-propane and alcohol-to-jet pathways (not mentioned in the analysed reports)

*Still including the UK

The analysis shows that there should be sufficient feedstocks (biomass and renewable electricity) available for the pathway to be realised. Feedstocks are not double counted
POLICY RECOMMENDATIONS

BioLPG must be recognised within European policy frameworks and regulations

A holistic view is particularly important. The European policymakers are missing an opportunity to support the alternative low-carbon renewable gas solution in transport and for homes, buildings and processes, especially in off the gas grid areas. To encourage decarbonisation of the energy mix used by cars and in rural homes, businesses and industries, the legislation needs to explicitly recognise bioLPG. To fully benefit from the lower carbon footprint of bioLPG, a Well-To-Wheel (WTW) should be the basis to assess car emissions and energy efficiency.

- The revised Renewable Energy Directive should include a clear definition of bioLPG, the list of default energy content should be extended to various types of bioLPG (Annex III) and default GHG emission savings coming from bioLPG production pathways should be recognised in Annex V
- If bioLPG is injected together with biomethane to meet the calorific value required for the gas network, it should be eligible for any incentives offered to biomethane in such cases

European and national policies should provide incentives for low-carbon liquid fuel and renewable gas producers to produce and valorise bioLPG

European and national policies should offer incentives for consumers to switch to LPG in the short-term and bioLPG in the future

Decarbonising off-grid homes, businesses and industries, as well as the passenger car park with LPG and through the gradual introduction of bioLPG is the best chance of reaching climate-neutrality cost-effectively. Without having to resort to expensive upgrading or future retrofitting of the heating systems the European rural areas can lock-into lower CO2 emissions. BioLPG fully complements existing alternative fuel infrastructure, not only for new car sales, but also serve to decarbonise and improve the air quality from the existing fleet.

- The Renovation Wave initiative should encourage providing European and national incentives for consumers to switch from high carbon fuels (such as coal or heating oil) to LPG and bioLPG in the future
- The upcoming review of the Energy Taxation Directive should continue allowing Member States to exempt from energy and CO2 taxation LPG and bioLPG
- The Commission should carefully consider the impact of any new proposals have on low-income households in rural areas, which might be disproportionately affected by policies encouraging expensive retrofits
- The revision of the Alternative Fuels Infrastructure Directive should maintain the current definition of “alternative fuels”, some of which can easily penetrate the market and are compatible with the internal combustion engine (ICE) technologies

European and national policies should provide incentives for low-carbon liquid fuel and renewable gas producers to produce and valorise bioLPG

BioLPG production is an exciting opportunity for the EU and regions which specialise in developing circular economy solutions. Any new production facilities, utilising sustainable local feedstock’s, will create new jobs for the local area, contributing to economic growth and ultimately creating the renewable energy needed to reach the climate-neutrality ambition.

- European and national R&D funding should be made available for low TRL processes to obtain bioLPG through Horizon Europe or the LIFE programme
- The bioLPG production should be subsidised to allow various technologies to mature
- Renewable and low-carbon fuel producers should be incentivised to capture or directly produce bioLPG
- Generate more research, development and deployment funding for transport modes and alternative fuels if their climate targets become more ambitious
LPG industry’s Pledge

Liquid Gas Europe pledges to transition to 100% renewable bioLPG by 2050.

In recent years, the LPG industry has succeeded in commercialising and scaling bioLPG distribution. The industry delivers a new renewable energy source through a readily available, well-established and affordable supply chain to energy-users who are not connected to the gas grid.

Nevertheless, rural consumers’ choice of flexible and affordable energy sources is still limited. The reality of rural private and non-domestic properties is that they are often old or historic buildings that are difficult to treat and hard-to-decarbonise. There is no one size fits all solution to provide sufficient warmth at an affordable price, avoid expensive retrofitting and keep the visual integrity of a property.

Liquid Gas Europe advocates a mixed technology approach to the transport sector and heating technologies in off-grid homes, businesses and industries. It is the most effective approach to reduce their carbon and air pollutant emissions today and in the future with bioLPG.

Today Autogas is the number one alternative fuel in the EU, counting 8 million vehicles and 35,000 fueling stations. Further, converting existing vehicles to Autogas is affordable for the consumer, and a cost-effective solution to accelerate road transport emissions reduction efforts from today’s car park. All these efforts are a perfect basis for the segment to increase the uptake of bioLPG.

To further grow the bioLPG market, the policymakers’ actions alone are not sufficient.

It is the industry’s ambition to continue advancing both bioLPG uptake and production by:

• Advising consumers and businesses on the possibility and advantages of switching to LPG in the short-term and bioLPG in the future
• Educating stakeholders and policymakers about bioLPG and its potential
• Approaching investors on possible projects producing bioLPG
• Considering investing in the production of bioLPG
• Joining consortia applying for EU funding of research projects
• Sponsoring industry-funded PhD, collaborating with research labs or offering research grants to look into new technology pathways for bioLPG
ANNEX: TECHNOLOGIES AND PROCESSES FOR THE BIO-LPG PRODUCTION

HVO - Hydrogenated Vegetable Oil

Gasification to biofuels/biogases

Biogas to LPG
Power-to-X

LOW-CARBON POWER

WATER

ELECTROLYSER

LOW-CARBON POWER

FLUE GAS

CO₂ ABSORBER

CO₂

HYDROGEN

TO THE GAS GRID OR H₂/GAS GRID

OXYGEN

TO BIOMASS GASIFIER

SYNGAS GENERATOR

SYNGAS

H₂ & CO

STORAGE

SYNGAS GENERATOR

DIESEL GASOLINE JET LPG

TO THE GAS GRID OR H₂/GAS GRID

OXYGEN

TO BIOMASS GASIFIER

SYNGAS GENERATOR

DIESEL GASOLINE JET LPG