

TYNDP 2017 - identification of problems

Contribution to the 3rd PCI process

Preliminary results

BEMIP Regional Group - 26 October 2016

ENTSOG System Development Team

Infrastructure gap under TYNDP 2017 BEMIP Region

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

Infrastructure gap under TYNDP 2017 BEMIP Region

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

entsog

Where are we in the TYNDP process?

- Strong cooperation with ACER and European Commission all along the process
- An intense interaction with Stakeholders
- Dialogue with ENTSO-E on TYNDP Scenarios

Infrastructure gap under TYNDP 2017 BEMIP Region

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

4 Demand Scenarios

Scenario		Slow Progression	Blue Transition	Green Evolution	EU Green Revolution
Category	Parameter				
Macroeconomic trends	EU on track to 2050 target?	Behind	On track	On track – National ambitions	On track / beyond - EU level ambitions
	Economic conditions	Limited growth	Moderate growth	Strong growth	Strong growth
	Green ambitions	Lowest	Moderate	High	Highest
	CO2 price	Lowest	Moderate	Highest	Highest
	Fuel prices	Highest	Moderate	Lowest	Lowest
Heating sector	Energy Efficiency improvement	Slowest	Moderate	Fastest	Fastest
	Competition with	Limited gas	Limited gas	Gas displaced by	Gas displaced by
	electricity	displacement by	displacement by	electricity (district	electricity (district
		elec. (new buildings)	elec. (new buildings)	heating, heat pumps)	heating, heat pump
	Electrification	Lowest	Moderate	High	Highest
Power sector	Renewables develop.	Lowest	Moderate	High	Highest
	Gas vs Coal	Coal before Gas	Gas before Coal	Gas before Coal	Gas before Coal
Transport sector	Gas in transport	Lowest	Highest	Moderate	Moderate
	Elec. in transport	Lowest	Moderate	Highest	Highest

Related ENTSO-E 2030 Visions

Vision 1

Vision 3

Vision 4

Vision 4

End-user demand

Stable to decreasing demand depending on energy efficiency gains and electrification of the heating sector

Gas for power demand

Stable to increasing demand depending on role of gas in RES back-up and substituting coal-fired generation

Overall gas demand

TYNDP assessment performed for the 3 on target scenarios

Several paths to achieving the EU targets

Energy Efficiency

- > 27% (resp. 30%) targets set against the 2007 PRIMES baseline for 2030 (total primary energy). In reference to the **2005 level**, it corresponds to **20% gains** (resp. **23%**)
- > Standard usages of gas already allow to achieve the EE target
- > Gas displacing other fuels, such as for power generation, further increases the gains

Several paths to achieving the EU targets

CO2 emissions

> The on-target scenarios achieve the target of 40% CO2 reduction compared to 1990

Renewables

- > TYNDP 2017 scenarios for power generation are based on ENTSO-E TYNDP 2016 Visions which comply with the EU RES-E target
- > TYNDP 2017 scenarios incorporate **biomethane**, a renewable gas source

CO2 emissions in 2030 – overall power demand and gas end-user demand

The gas grid is to be assessed for the different paths

Gas grid assessed both from an annual volume and high demand situation perspective

European gas and electricity demand – over the year and peak perspectives

Infrastructure gap under TYNDP 2017 BEMIP Region

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

The TYNDP 2017 assessment frame

Low infra level analysis: Focus of today presentation

A multi-criteria analysis

Infrastructure gap under TYNDP 2017 BEMIP Region

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

Identication of problems

TYNDP identifies the infrastructure gap

- > TYNDP assessment is performed under an assumption of perfect market functioning
 - To avoid identifying needs where better market functioning would solve the issue
 - To focus on the infrastructure needs

The results allow to identify

- > The most impacted countries
- > The infrastructure limitations

Identified issues may be mitigated by different types of gas infrastructure

Exposure to demand disruption

High demand situation

Disrupted rate and Remaining Flexibility

- > The **disrupted rate** indicates the share of a country's demand that cannot be covered. It is calculated under **cooperative behaviour** between countries
 - Countries will align their disruption rate if infrastructures allows for it
 - Non-alignement between countries indicate an infrastructure bottleneck
- > When a country does not face disruption, the remaining flexibility indicates the additional share of demand that the infrastructure would allow to cover. It is calculated non-simultaneously for each country.

Cases investigated

- > Normal situation
- > Specific route disruption cases: in this case we are interested in the <u>additional</u> <u>impact</u> compared to the normal situation case
- > Cases leading to demand disruption are presented

Security of supply

The BEMIP Region is able to cover its demand even under peak situation

Blue Transition

0% - 20%

Share of curtailed demand 50% - 100% 20% - 50%

0% - 20%

Exposure to demand disruption under normal situation

Low Rem Flex: SE, DK, PL Green Rev: only SE

BEMIP

Security of supply

situation

(peak day)

High demand

Exposure to demand disruption – under Belarus route disruption

Blue Transition

Remaining Flexibility

20% - 50% 0% - 20%

Share of curtailed demand

50% - 100% 20% - 50%

0% - 20%

HR unchanged from normal situation

	ВЕМІР
Exposure to demand disruption under Belarus route disruption	Disruption: PL GRev: PL low Rem Flex

Security of supply / Competition EU supply needs

Decline of indigenous production leads to increased supply needs over time for 2 out of the 3 scenarios

Security of supply / Competition EU supply mixes – Retained supply potentials

Security of supply / Competition EU supply mixes

Blue Transition

The low infrastructure level enables a wide range of supply mixes.

Security of supply / Competition EU supply mixes

Green Revolution

The low infrastructure level enables a wide range of supply mixes.

Security of supply / Competition Dependence to supply sources

- > Dependence to a given supply source (CSSD) should be understood as the minimum share of this source necessary for a country to cover its demand on a yearly basis
- > Dependence is presented under **cooperative behaviour** between countries
 - Countries will align their mimimum source share (CSSD) if infrastructures allows for it
 - Non-alignement between countries indicate an infrastructure bottleneck
- > High CSSD level can inform both on security of supply and competition
 - In the case of LNG, being a multi-source supply, security of supply is not at stake

Results show no noticeable dependence in the BEMIP Region to Norwegian* gas or LNG

Security of supply / Competition Dependence to Russian supply

Whole year

Blue Transition

- > At EU level, no infrastructure limitation preventing full access to the other supply sources*
- > At country-level, some highly dependent countries indicating infrastructure bottleneck

	ВЕМІР
Dependence to Russian supply above 25%	EE, FI, LV, LT, PL G.Rev: PL below 25%

CSSD 50% - 100% 25% - 50% 15% - 25% 5% - 15% 0%-5%

*the EU-level dependency derive from the maximum supply potential from the other sources
Results for the other scenarios are provided in Annex

Competion - Access to Supply Sources

Access to Supply Sources is based on the SSPDi indicator

- > **SSPDi**: capacity of a country to reflect a given source low price in its supply bill (SSPDi: supply bill share impacted)
- > Access to Supply Sources indicates the number of sources for which SSPDi exceeds a 20% threshold

Blue Transition - Access to sources

LNG is a multi-source supply: results should be interpreted accordingly

Competion - Access to Supply Sources

Indigenous production fades out as a diversification option

Blue Transition - Access to sources

LNG is a multi-source supply: results should be interpreted accordingly

BEMIP focus

	ВЕМІР
s to less than 3 supply sources uding LNG)	EE*, FI, LV*, LT*

Most of the countries accessing a limited number of supply sources also show high dependence to Russian gas

Price effects - LNG

LNG supply maximisation* (low LNG price) - Green Evolution

Legend: price decrease compared to the balanced supply configuration (EUR/MWh)

	0.5	2.0)	5.0
0.0		1.0	3.0	

Price effect: barriers to low price propagation	ВЕМІР
LNG Maximisation (low LNG price)	FI vs Baltic states PL vs Baltic states

LNG is a multi-source supply: results should be interpreted accordingly

^{*}Price effects under supply maximisation configuration based on SSPDi – Consider SSPDi when interpreting

Price effects – Russian gas

entsog

Whole year

Russian supply maximisation* (low RU price) - Green Evolution

Legend: price decrease compared to the balanced supply configuration (EUR/MWh)

Barriers to low price propagation	ВЕМІР
Russian gas Max. (low RU price)	West vs East

Russian supply minimisation** (high RU price) - Green Evolution

Legend: price increase compared to the balanced supply configuration (EUR/MWh)

_	0.5	2,0		5.0
0.0	1	.0	3.0	•

Barriers to high price mitigation	BEMIP
Russian gas Min. (high RU price)	Same as CSSD to RU supply

^{*}Price effects under supply maximisation configuration based on SSPDi – Consider SSPDi when interpreting **Price effects under supply minimisation configuration based on CSSD

Market integration - Price spreads

- > Handled through a simulation focusing on Russian supply price information
 - Input: EC quarterly report Q1-16 EBP2
 information* (European Border Price: Russia)
 - Price spreads measured to German border price
- > Marginal prices simulated for 2017

Market integration - Price spreads

Market integration

Whole year

2020-Blue Transition

	ВЕМІР
Price spreads	EE, FI, LV, LT, PL

Conclusions

	ВЕМІР
Isolation	FI
Exposure to demand disruption	PL
Increased supply needs due to decreasing indigenous production	All countries
Dependence or access to limited number of supply sources (* including LNG)	EE*, FI, LV*, LT*, PL
Price effects - Barriers to low price propagation	FI vs Baltic states PL vs Baltic states
- Barriers to high price mitigation	Same as CSSD
Price spreads	EE, FI, LV, LT, PL

- > The results allow to identify the most impacted countries and infrastructure limitations
- > Identified issues may be mitigated by different types of gas infrastructure

Thank You for Your Attention

Céline Heidrecheid System Development Business Area Manager

ENTSOG -- European Network of Transmission System Operators for Gas Avenue de Cortenbergh 100, B-1000 Brussels

EML: Celine.heidrecheid@entsog.com

WWW: www.entsog.eu

Infrastructure gap under TYNDP 2017 BEMIP Region

Annex

Demand – BEMIP focus

Country-level demand evolution

Total annual gas demand evolution – 2017 to 2035

Dependence to Russian gas

