Dear all,

Enclosed you find Bayer CropScience documentation related to the AIA procedures for the first transboundary movement of herbicide tolerant canola seeds from Belgium to the US.

You will find information for the following movements:

<table>
<thead>
<tr>
<th>Notification No.</th>
<th>Notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-258-101n (HT-12E-BN-I)</td>
<td>Brassica napus (oilseed rape)</td>
</tr>
</tbody>
</table>

Sincerely yours,

Best Regards / Vriendelijke Groeten / Cordialement / Freundliche Grüße

Bayer CropScience

Science For A Better Life

Bayer CropScience NV
Dear

Your notification request has been acknowledged and may be executed according to 7 CFR § 340.3(c). You are authorized to perform the importation of the regulated article between October 8, 2012 and October 8, 2013. All activities related to this introduction (except for any monitoring periods) must be completed by the expiration date (i.e., all shipments must have arrived at their destination, plants harvested, and all remaining plants and plant parts are either destroyed or moved into contained facilities).

In the event of any accidental and/or unauthorized release of the regulated article, contact BRS Compliance Evaluation and Enforcement Branch by phone (301) or fax (301), or e-mail at

If you have a general question regarding your notification, contact BRS Permits unit by phone (301) 851-3935 or e-mail.

Some key details of your notification are shown here:

Importation
Notification No. 12-258-101n (HT-12E-BN-I)
Regulated Article - Oilseed rape
Origin - Belgium
Destination - New York

This acknowledgement letter must be provided to all cooperators.

Important - Import Notifications Only

Imports may require a phytosanitary certificate from the country of origin, a phytosanitary certificate of re-exportation (e.g., Ships from South Africa to France, then France to the U.S.), a Plant Protection and Quarantine (PPQ) permit, and/or other certifying PPQ documents. Also, some interstate movement and release notifications may also be subject to PPQ domestic permit and/or quarantine requirements. Please call PPQ at (877) 770-5990 for additional assistance in regards to their requirements.

Planting Report Information - All Releases & Movement / Release Notifications Only

APHIS requires that responsible parties submit a Planting Report no later than the 15th day of the month that follows the date the environmental release occurred (e.g., a planting any time April 1-30 must be reported by May 15). This report provides APHIS with additional details about the actual releases that have taken place under an acknowledged notification. The report must include: the Notification number; name of the regulated article; trial site location data (provide state, county, northwest GPS coordinate, and site identification number (if available); acreage of regulated article planted; and planting date for each location. For additional information on planting reports see the Notification Users Guide:
Additionally, the planting report should list any sites included in the original notification that will not be planted. If there are multiple planting dates, you may submit reports monthly no later than the 15th day of the month that follows planting to inform APHIS of any new plantings. Planting reports can combine information from multiple notifications; i.e., only a single report need be submitted that lists all the plantings for the previous calendar month. Reports need not be submitted when no planting occurs.

Final Field Test Reports - All Release & Movement / Release Notifications Only

Field test reports must be submitted to APHIS within 6 months after termination of the field test. Field test reports shall include the APHIS reference number, methods of observation, resulting data, and analysis regarding all deleterious effects on plants, nontarget organisms, or the environment. (7 C.F.R. § 340.3(d)(4)).

All environmental releases of regulated articles under notification require the submission of a field test report within six months of the termination of the field test. Because APHIS does not always know the actual termination date in advance, APHIS considers the field test report to be due no later than six months after the expiration of the notification.

The following information must be included in the field test report:

- APHIS Notification number
- Location Name
- County
- State
- Indicate if any of the planted material was destroyed before harvest
 If so, provide the pre-harvest destruction completion date and describe how the pre-harvested material was destroyed
- Indicate if any of the planted material was harvested and if so provide the harvest completion date.
 Describe how the harvested material was terminated
- If the material was terminated in the field and not removed from the field, provide the date the field test was completely terminated and describe the method of termination
- If material was removed from the field and terminated off site describe how it was disposed and provide the date of off site destruction.
- If material was removed from the field and placed in storage, provide the amount of material that was stored and provide a description of the storage location
- Describe any other disposition Methods that may be applicable
- Describe any deleterious effects on plants, non target organisms, or the environment
- Describe methods of observations and resulting data and analyses
- Indicate if you have submitted any of the following:
 1. A report on the accidental or unauthorized release of the regulated article;
 2. A report that characteristics of the permitted species are substantially different from those listed in the application; or
 3. A report of any unusual occurrence.

For additional guidance on these requirements, see the BRS User’s Guide for Notifications at http://www.aphis.usda.gov/biotechnology/downloads/notification_guidance_0311.pdf

Please submit all planting and final field test reports via ePermits using the link under “My Reports and Notices.”

Other options are to submit reports via email or paper, however, we strongly encourage submission
via ePermits. If submitting using any other method then CBI and CBI-deleted or non-CBI copies should be submitted via:

BRS E-mail:

BRS Mail:
Animal and Plant Health Inspection Service (APHIS)
Biotechnology Regulatory Services (BRS)

You must comply with the performance standards as stated in 7 CFR 340.3(c) and transcribed below:

1. If the plants or plant materials are shipped, they must be shipped in such a way that the viable plant material is unlikely to be disseminated while in transit and must be maintained at the destination facility in such a way that there is no release into the environment.
2. When the introduction is an environmental release, the regulated article must be planted in such a way that they are not inadvertently mixed with non-regulated plant materials of any species which are not part of the environmental release.
3. The plants and plant parts must be maintained in such a way that the identity of all material is known while it is in use, and the plant parts must be contained or devitalized when no longer in use.
4. There must be no viable vector agent associated with the regulated article.
5. The field trial must be conducted such that:
 (i) The regulated article will not persist in the environment, and
 (ii) No offspring can be produced that could persist in the environment.
6. Upon termination of the field test:
 (i) No viable material shall remain which is likely to volunteer in subsequent seasons, or
 (ii) Volunteers shall be managed to prevent persistence in the environment.

To ensure compliance with performance standards, you or any of your cooperators who will be involved in handling the regulated article must be prepared with a written description of the methods to be employed to meet each performance standard. Although not requirements, all packages should be clearly labeled as to content, and the notification number should be prominently displayed on the package. Regulated articles introduced under notification are subject to the performance standards in the regulations even after the or expiration date of the notification.

A copy of this letter of acknowledgement will be sent to the relevant State Regulatory Officials.

Sincerely,

Permits and Program Services Branch
Regulatory Operations Programs
Biotechnology Regulatory Services

cc:
The information claimed as confidential within this application may comprise either the genotype/phenotype description or commercial development information. The genotype/phenotype description category includes, among other items, names and information about the recipient plant, the phenotype of the regulated article, vectors, mode of transformation, gene coding regions, associated regulatory sequences and expressed traits. Commercial development information includes, among other items, the names and locations of cooperators, collaborators, investigators, and contacts. This confidential business information justification is submitted by Bayer CropScience LP ("Bayer"). Bayer is the successor in interest of Aventis CropScience USA LP. Bayer is part of the worldwide Bayer CropScience group of companies which also includes Bayer BioScience N.V. (the former Aventis CropScience N.V., which was the former Plant Genetics Systems N.V.) and Bayer CropScience AG (which includes the former Bayer CropScience GmbH, which was the former Aventis CropScience GmbH and the former Hoechst Schering AgrEvo GmbH). All of these entities are referred to as Bayer CropScience in the statements given below. GENOTYPE/PHENOTYPE DESCRIPTION Central to the commercial value of Bayer CropScience's biotechnology products is the genetic information that confers the desired traits on the plant product, as well as the technical means by which the desired products have been achieved. Bayer CropScience has spent many person years in developing its expertise in the field of plant biotechnology, concurrent with the expenditure of millions of dollars on biotechnology research. In the rapidly growing and highly competitive industry of biotechnology products, Bayer CropScience has a leading edge. Bayer CropScience has been working on the development of genetically enhanced plants, particularly those with herbicide tolerance, since the early 1980's and can document the large sums of money spent in research and testing costs. The uniqueness of Bayer CropScience's products lies in the transformation and regeneration methods and/or the combination of genetic components in the vectors transferred into the genomes of the recipient plants. The transformation and regeneration methods may be Bayer CropScience proprietary methods or available through licensing of others' proprietary methods. The genetic components in these vectors include the coding sequence for the expression of the trait(s), and regulatory sequences such as promoters, enhancers, introns, termination and polyadenylation sequences. In certain cases, the recipient plant strain used is tantamount for regeneration and other desired features. Although the information on the transformation methods, recipient plant strains, or on each of these vector components may be in the public domain, the particular combination of the components put together by Bayer CropScience is unique and represents a great expenditure of time and money. Competitors (which include, by way of example, Monsanto/DeKalb, Syngenta, DuPont/Pioneer, Dow Mycogen, Stine Seeds) of Bayer CropScience cannot presently duplicate Bayer CropScience's commercially valuable products without going through the painstaking process of trial and error development and testing of many different combinations of genetic information and plant strains. Access to genotype and/or phenotype description information, including the donor organisms and the recipient plant, for Bayer CropScience's products would allow competitors to create similar products that would result in a market share loss for Bayer CropScience of millions of dollars. By performing simple copy work, these competitors would avoid the significant expenditure of dollars, research time and effort used by Bayer CropScience to develop its commercial products. Furthermore, the release of genotype and phenotype information would provide competitors with commercially valuable knowledge about particular products that Bayer CropScience is planning to commercialize and the likely timeframe for commercialization. Such information would be extremely useful to these companies in developing their own marketing and development strategies and thus its release would cause Bayer CropScience substantial competitive harm. COMMERCIAL DEVELOPMENT INFORMATION The disclosure of information about the names of cooperators, collaborators, investigators, research farm on-site personnel or contacts and the location and characteristics of the field experiments will provide
Bayer CropScience's competitors with invaluable information about Bayer CropScience's marketing strategy, and could cause severe harm to Bayer CropScience's competitive standing in the industry. In particular, release of the choice of cooperators and collaborators provides the competition with knowledge about the individuals and organizations that Bayer CropScience has found, through experience and investigation, to be most expert. Information on the location and characteristics of the field experiments will directly, or with little effort, provide the identity of the cooperators and collaborators. There is no doubt that competitors would seek to use the services of the entities found most expert by Bayer CropScience, and limit or block access to these sources. This could be accomplished by prices for services being increased, or by competitors acquiring exclusive licenses with these individuals and organizations, or by entering into contracts that would essentially tie up the time and facilities of such entities. Maintaining the good will of the cooperators and collaborators is also a very important consideration for Bayer CropScience's success. The release of information that would directly or indirectly identify these entities could cost Bayer CropScience considerable good will and cause the breach of an agreement with the entity concerned. This could lead to the loss of the entity as an expert source. If Bayer CropScience is forced to use alternative cooperators and collaborators, it would take time to identify high technical performance, and it would represent a loss of the valuable expertise and understanding built-up with former entities. This, in turn, could result in a delay in bringing products to market, which would cost Bayer CropScience sums into the millions of dollars. Additionally, the disclosure of information about cooperators and collaborators would provide strong insights into Bayer CropScience's marketing strategy by revealing where Bayer CropScience is planning to introduce the products, and the schedule for such introduction. Finally, all information deemed confidential is not known to others unless made available by appropriate secrecy agreements. Bayer CropScience takes the necessary precautions to prevent the intentional or unintentional disclosure to others of this information, supplemented with general site security system of gate guards, 24-hour security personnel, employee identification, limited access areas, escorts for visitors and restrictions for visitors, employee secrecy agreements, locked cabinets, files and data rooms, inside mail marked confidential and sealed, as well as other security measures.

5. REGULATED ARTICLE

Scientific Name: Brassica napus
Common Name: Oilseed rape
Cultivar and/or Breeding Line: []

6. PHENOTYPIC DESIGNATION

1) Phenotypic Designation Name: []

Identifying Line(s): G1BN1129-00101 thru G1BN1129-99999

Construct(s): []

Mode of Transformation: []

Phenotype(s)

MT - []
MG - []

Genotype(s)

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []

Gene: [] from [] - []

Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Screenable Marker
Promoter: [] from [] - []

Intron: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

2) Phenotypic Designation Name: 2

Identifying Line(s): G1BN1152-00101 thru G1BN1152-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
HT - []
MG - []

Genotype(s)
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Screenable Marker
Promoter: [] from [] - []
Intron: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

3) Phenotypic Designation Name: 3

Identifying Line(s): G1BN1162-00101 thru G1BN1162-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
HT - []
AP - []

Genotype(s)
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []

Terminator: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

4) Phenotypic Designation Name: 4
Identifying Line(s): GLBN0129-00101 thru GLBN0129-99999
Construct(s): []
Mode of Transformation: []
Phenotype(s)
AP - []
HT - []
Genotype(s)
Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []
Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

5) Phenotypic Designation Name: 5
Identifying Line(s): GLBN0130-00101 thru GLBN0130-99999
Construct(s): []
Mode of Transformation: []
Phenotype(s)
AP - []
HT - []
Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

6) Phenotypic Designation Name: 6
Identifying Line(s): GLBN0132-00101 thru GLBN0132-99999
Construct(s):
Mode of Transformation:
Phenotypes:
AP - []
HT - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []
7) Phenotypic Designation Name: 7

Identifying Line(s): GLBN0174-00101 thru GLBN0174-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
AP - []
HT - []

Genotype(s)

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Intron: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

8) Phenotypic Designation Name: 8

Identifying Line(s): GLBN0175-00101 thru GLBN0175-99999, GLBN0184-00101 thru GLBN0184-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
AP - []
HT - []

Genotype(s)

Screenable Marker
Promoter: [] from [] - []

Gene(s) of Interest
Gene: [] from [] - []
Gene: [] from [] - []
Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

9) Phenotypic Designation Name: 9

Identifying Line(s): GLBN0177-00101 thru GLBN0177-99999
Construct(s): []
Mode of Transformation: []

Phenotype(s)
AP - []
HT - []

Genotype(s)
Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Intron: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []
10) Phenotypic Designation Name: 10

Identifying Line(s): GLBN0178-00101 thru GLBN0178-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)

AP - []
HT - []

Genotype(s)

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Intron: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Promoter: [] from [] - []
Gene: [] from [] - []
Intron: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

11) Phenotypic Designation Name: 11

Identifying Line(s): GLBN0185-00101 thru GLBN0185-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
Genotype(s)

Gene(s) of Interest
Promoter: [] from [] - []

Gene: [] from [] - []

Intron: [] from [] - []

Gene: [] from [] - []

Terminator: [] from [] - []

Promoter: [] from [] - []

Gene: [] from [] - []

Intron: [] from [] - []

Gene: [] from [] - []

Terminator: [] from [] - []

Recombination Site Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []

Gene: [] from [] - []

Terminator: [] from [] - []

Recombination Site Recognition Sequence: [] from [] - []

12) Phenotypic Designation Name: 12

Identifying Line(s): GLBN0186-00101 thru GLBN0186-99999

Construct(s): []

Mode of Transformation: []

Phenotype(s)

AP - []

HT - []
<table>
<thead>
<tr>
<th>Gene(s) of Interest</th>
<th>Promoter: [] from [] - []</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Intron: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Gene: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Terminator: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Promoter: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Gene: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Intron: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Gene: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Terminator: [] from [] - []</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene(s) of Interest</th>
<th>Recombination Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoter: [] from []</td>
<td></td>
</tr>
<tr>
<td>Gene: [] from []</td>
<td></td>
</tr>
<tr>
<td>Terminator: [] from []</td>
<td></td>
</tr>
</tbody>
</table>

13) Phenotypic Designation Name:

<table>
<thead>
<tr>
<th>Identifying Line(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLBN0188-00101 thru GLBN0188-99999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construct(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode of Transformation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
</tr>
</tbody>
</table>

Phenotype(s):

<table>
<thead>
<tr>
<th>AP</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT</td>
<td>[]</td>
</tr>
</tbody>
</table>

Genotype(s):

<table>
<thead>
<tr>
<th>Gene(s) of Interest</th>
<th>Promoter: [] from [] - []</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene: [] from [] - []</td>
<td></td>
</tr>
<tr>
<td>Terminator: [] from [] - []</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recombination Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition Sequence: [] from [] - []</td>
</tr>
</tbody>
</table>
Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

14) Phenotypic Designation Name: 14

Identifying Line(s): GLBN0189-00101 thru GLBN0189-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
AP - []
HT - []

Genotype(s)
Gene(s) of Interest
Promoter: [] from [] - []
Transit Peptide: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []

Recombination Site
Recognition Sequence: [] from [] - []

15) Phenotypic Designation Name: 15

Identifying Line(s): GLBN0190-00101 thru GLBN0190-99999

Construct(s): []
Mode of Transformation: []

Phenotype(s)
AP - []
HT - []
Genotype(s)

Gene(s) of Interest
Promoter: [] from [] - []
Transit Peptide: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

16) Phenotypic Designation Name:

Identifying Line(s): GLBR0191-00101 thru GLBR0191-99999

Construct(s):

Mode of Transformation:

Phenotype(s)

AP - []
HT - []

Genotype(s)

Gene(s) of Interest
Promoter: [] from [] - []
Transit Peptide: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

Gene(s) of Interest
Promoter: [] from [] - []
Gene: [] from [] - []
Terminator: [] from [] - []
Recombination Site
Recognition Sequence: [] from [] - []

Page 12 of 14
7. INTRODUCTION

<table>
<thead>
<tr>
<th>Location Name & Description</th>
<th>Location Address</th>
<th>Contact(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Bayer CropScience N.V.</td>
<td></td>
<td>1) Ms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Day Telephone:</td>
</tr>
<tr>
<td></td>
<td>County:</td>
<td>2) Mr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Day Telephone:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Name & Description</th>
<th>Location Address</th>
<th>Contact(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) []</td>
<td></td>
<td>1) Mr.</td>
</tr>
<tr>
<td></td>
<td>County:</td>
<td>New York</td>
</tr>
<tr>
<td></td>
<td>Proposed Start Date:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proposed End Date:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantity:</td>
<td></td>
</tr>
<tr>
<td>2) []</td>
<td></td>
<td>New York</td>
</tr>
<tr>
<td></td>
<td>Day Telephone:</td>
<td></td>
</tr>
</tbody>
</table>

8. ADDITIONAL INFORMATION
I certify that the regulated article will be introduced in accordance with the eligibility criteria and the performance standards set forth in 7 CFR 340.3. The above information is true to the best of our knowledge.

I acknowledge this is not an application to move or import select agents, the genes expressing select agents, or the toxins made by the select agents, as described in 9 CFR 121.

If there are any changes to the information disclosed in this application, I will contact APHIS.

<table>
<thead>
<tr>
<th>9. SIGNATURE OF RESPONSIBLE PERSON</th>
<th>10. DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>September 14, 2012</td>
</tr>
</tbody>
</table>