

EUROPEAN COMMISSION JOINT RESEARCH CENTRE

Directorate C - Energy, Transport and Climate Sustainable Transport Unit C.4

Annex To:

Interim Report for AA DG-GROW/JRC

No. SI2.730104 - Task 5.1

Date of Issue	November 22, 2017

Contents	The present document is the progress report regarding the JRC measurements (anonymized vehicle under non-disclosure agreement, Euro 6, JRC ID XX001, vehicle technical details in the report). The report contains a summary of the JRC activities, together with the vehicle emissions results on various test cycles, in the laboratory and on the road.
Disclaimer	The information and views set out in this document are a property of the Joint Research Centre (JRC). They are of preliminary nature and were not fully screened and processed according to the JRC quality and publication rules. Neither the Commission nor any person acting on the Commission's behalf may be held responsible for the use which may be made of the information contained therein.

Background and disclaimer

To support the Member States market surveillance activities regarding emissions of light-duty vehicles, the European Commission has published a Guidance note¹ (hereinafter "the Guidance") to evaluate emissions strategies and to detect the presence of defeat devices. The JRC contributed to the development of the Guidance and provided a testing protocol which the responsible authorities may use to detect illegal Auxiliary Emissions Strategies (AES). The protocol includes three main elements:

- It defines the principles to test vehicles, i.e. to modify certain elements of the standard emissions tests and to assess whether these modifications are likely to influence the behavior of the emissions control technologies;

- It proposes NO_x emissions thresholds for different categories of tests, not with the objective to verify the vehicle compliance but rather to point at suspicious results which might be caused by illegal strategies;

- The Guidance goes further by introducing acceptable and non-acceptable AESs for specific emissions control technologies.

The Guidance was published in January 2017 and is subject to continuous improvements from the lessons learned during the National surveillance programs and the JRC testing. The JRC keeps testing vehicles with the objective to improve the test protocol, in particular its application to a variety of technologies and emissions standards.

The present document is an application of the protocol to a specific vehicle, which might have been tested in one or several European National programs. The JRC results and the information contained herein might be subject to analysis and verification by the responsible authorities. If the vehicle has not been tested in a national program and is found to exhibit anomalous results, the responsible authority shall repeat the tests on a similar vehicle to eliminate the potential uncertainty or the bias inferred from the single vehicle tested at the JRC.

Whenever possible, the report provides detailed information (e.g. functioning of the emissions control technologies and/or second-by-second data) to provide explanations regarding the difference(s) which may appear between the emissions from tests conducted under different conditions.

As the declarations regarding the functioning of the emissions control are under the control of the vehicle Type Approval Authority, the report does not provide any judgement on the legality of the observed AES. The vehicle emission performance is only confronted with the Guidance.

¹ Commission Notice of 26.1.2017 - Guidance on the evaluation of Auxiliary Emission Strategies and the presence of Defeat Devices

Acronyms and abbreviations

AES: Auxiliary Emissions Strategies **CF:** Conformity Factor DOC: Diesel Oxidation Catalyst DPF: Diesel Particulate Filter ECE: Economic Commission for Europe ECS: Emissions Control Systems ECU: Engine Control Unit EGR: Exhaust Gas Recirculation EUDC: Extra-Urban Driving Cycle JRC: Joint Research Centre LNT: Lean NOx Trap MAW: Moving Average Window NEDC: New European Driving Cycle OEM: Original Equipment Manufacturer **RDE:** Real Driving Emissions RL: Road Load **RT: Recommended Threshold** SCR: Selective Catalytic Reduction WLTC: Worldwide harmonized Light vehicles Test Cycle WLTP: Worldwide harmonized Light vehicles Test Procedures

Test program overview

The application of the protocol to detect illegal AES is subject to adaptations depending on the vehicle technologies. Table 1 shows the types of tests and their objectives for the vehicle presented in this document.

Type of Test	Category ²	Objectives			
NEDC Cold	-	Vehicle emissions compliance under standard conditions			
NEDC Hot	2	Emissions performance with hot engine			
		Potential timer or hot vehicle condition triggering AES			
NEDC w/o	2	Emissions performance on a cold started NEDC driving cycle without			
preconditioning Cold		device triggered by the vehicle conditioning			
NEDC after grade Hot	2	Emissions performance on a hot started NEDC driving cycle after			
		jacking up the car front, to check for the presence of a defeat device			
NEDC +10% Cold	2	triggered by the vehicle inclination Vehicle emissions on a modified NEDC driving cycle driven with 10%			
NEDC +1070 Cold	2	higher speed, to check for the presence of a defeat device triggered by the			
		driven distance			
NEDC + Load Hot	2	Emissions performance with hot engine and additional engine loads (A/C			
		and lights)			
NEDC + 10%C C-14	2	Potential use of vehicle systems triggering AES			
NEDC +10°C Cold	2	Emissions performance at low ambient temperature			
		remperature condition potentiarly triggering ratio			
NEDC +30°C Cold	2	Emissions performance at high ambient temperature			
		Temperature condition potentially triggering AES			
WLTC Cold	3	Emissions performance on WLTC			
		Functioning of the ECS under controlled conditions beyond the NEDC			
		duration and distance (22 minutes)			
WLTC Hot	3	Emissions performance on WLTC			
		Effect of hot engine and functioning of the ECS under controlled			
		conditions beyond the NEDC duration and distance (22 minutes)			
RDE	3	Emissions performance on road			
		Functioning of the ECS under uncontrolled conditions and beyond the			
		NEDU duration and distance (22 minutes)			

Table 1: Type of tests and objectives

² The categorization of the various types of tests is made by the responsible testing entity and should be based on the lessons learned from its own testing activities and/or the publicly available information. It is subject to adaptations and revisions depending on the emissions control technology.

Main results

Table 2 shows the main emissions findings when applying the test protocol to the vehicle.

Table 2: Tailpipe emissions performance

Type of test [Category]	Remarks	Comp. ³ or CF ⁴
NEDC cold	The vehicle is compliant for all pollutant emissions	Compliance OK
NEDC Hot [2]	The average CF for the NOx emissions over hot NEDC cycles is 1.8	CF Not OK RT _{NOx} = 1.5
	Under these conditions, the average NOx emissions were higher when compared to the values obtained over a standard cold NEDC by a factor of ca. 3. This could be attributed to the lower EGR rates (See Figure 1)	CF _{NOx} = 1.8
NEDC w/o preconditioning	The average CF for the NOx emissions over cold NEDC cycles is	OK
Cold [2]	0.8	$RT_{NOx} = 1.5$
		$CF_{NOx} = 0.8$
NEDC after grade Hot [2]	The average CF for the NOx emissions over hot NEDC cycles is 1.6	$CF Not OK RT_{NOx} = 1.5$
	Under these conditions, the average NOx emissions were comparable to those observed over the hot NEDC.	$CF_{NOx} = 1.6$
NEDC +10% Cold [2]	The average CF for the NOx emissions modified cold NEDC	ОК
	cycles (+10% speed) is 1.1	$RT_{NOx} = 1.5$
		$CF_{NOx} = 1.1$
NEDC + Load Hot [2]	The average CF for the NOx emissions over hot NEDC cycle with additional engine load (A/C and lights on) is 1.4	OK RT _{NOx} = 1.5
		$CF_{NOx} = 1.4$
NEDC +10°C Cold [2]	The average CF for the NOx emissions over cold NEDC cycles at 10°C is 2.4	$CF Not OK RT_{NOx} = 1.5$
	Under these conditions, the average NOx emissions were higher when compared to the values obtained over a standard cold NEDC (at +23°C) by a factor of ca. 4. This could be attributed to the EGR valve functioning.	CF _{NOx} = 2.4
NEDC +30°C Cold [2]	The average CF for the NOx emissions over cold NEDC cycles at 30°C is 1.7	$CF Not OK RT_{NOx} = 1.5$
	Under these conditions, the average NOx emissions were higher compared to the values obtained over a standard cold NEDC (at $+23^{\circ}$ C) by a factor of ca. 3. This could be attributed to the lower EGR rates (See Figure 1).	CF _{NOx} = 1.7
WLTC Cold [3]	The average CF for the NOx emissions over cold WLTC cycle is 1.9	$OK RT_{NOx} = 5$
WI TC Hot [2]	The every of the NOV emissions over het WI TO evelope	$CF_{NOx} = 1.9$
	2.4	$RT_{NOx} = 5$
		$CF_{NOx} = 2.4$
RDE [3]	The CF for the NOx emissions over RDE routes varies between 3.6 and 3.8	$OK RT_{NOx} = 5$
		min. $CF_{NOx} = 3.6$ max. $CF_{NOx} = 3.8$

³ Compliance (Comp.) on Type 1 test versus the applicable limits

 $^{^4}$ NO_x Conformity Factor (CF) versus the thresholds recommended in the Guidance. CFs exceeding the thresholds are indicative but may point at problematic emissions strategies

Additional information regarding the AES

Over the hot start NEDC driving cycles (types of test NEDC Hot and NEDC after grade Hot), and over the test conducted with $+10^{\circ}$ C and $+30^{\circ}$ C driving ambient temperature, this vehicle exhibited NOx emissions above the thresholds recommended in the Guidance.

Figure 1 shows the cumulative EGR usage over these tests together with the EGR usage over the cold started NEDC (shown in red).

For the cold start tests performed at $+10^{\circ}$ C and $+30^{\circ}$ C (Figure 1 - left panels), the cumulative NOx emissions was 4 and 3 times higher than those obtained at 23°C under standard condition (cf. Cumulative NOx in g). This difference can be explained by the lower usage of the EGR valve (cf. Cumul. EGR), with a decrease of 35% and 20% at $+10^{\circ}$ C and $+30^{\circ}$ C respectively compared to the tests done at $+23^{\circ}$ C.

For the hot start tests (NEDC Hot and NEDC after grade Hot, Figure 1 – right panels), the cumulative NOx emissions was ca. 3 times higher than those obtained over the cold started NEDC at 23°. This difference can also be explained by the lower usage of the EGR valve, with a decrease of 35% compared to the cold started NEDC done at $+23^{\circ}$ C.

Figure 1: NOx emission (first row), NOx cumulative emission (second row), cumulative EGR (third row) and velocity (fourth row) of the vehicle over the cold started (left column) and hot started (right column) NEDC tests.

Appendix - Vehicle Report - Anonymized Vehicle [XX001]

November 22, 2017

A. Vehicle details

Table 1: Vehicle specification. RL stands for road load, with Inertia, F0, F1 and F2 in kg, N, N/(km/h) and N/(km/h)² respectively. NA stands for not available (vehicle covers by a non-disclosure agreement).

NA			
NA			
M1			
XX001			
Diesel			
Common Rail			
DOC+EGR+SCR+DPF			
2017			
NA			
NA			
Euro6b			
6479			
Automatic			
8			
2967			
193			
NA			
Inertia: 2270, F0: 134.5, F1: 0.36, F2: 0.056			
Inertia: 2390, F0: 194, F1: 0.37, F2: 0.059			
179			

B. Tests conducted

Туре	Repeats	Category of procedure
Standard NEDC acc. ECE R83	3	Reproducing the Type 1 test
NEDC - Hot vehicle	2	Category 2
NEDC w/o conditioning - Cold vehicle (+4h)	2	Category 2
NEDC after applying grade - Hot vehicle	2	Category 2
NEDC with $+10\%$ speed - Cold vehicle $(+4h)$	2	Category 2
NEDC with load (A/C) - Hot vehicle	2	Category 2
NEDC $@+10^{\circ}C$ - Cold vehicle (+4h)	2	Category 2
NEDC $@+30^{\circ}C$ - Cold vehicle (+4h)	2	Category 2
WLTC - Cold vehicle	2	Category 3
WLTC - Hot vehicle	2	Category 3

Table 2: Laboratory tests conducted

Туре	Repeats	Category of procedure
RDE Route 1 (Esperia) RDE Route 2 (Labiena)	$2 \\ 2$	Category 3 Category 3

Categories of procedure included in Tables 2 and 3 are those proposed in the Commission Guidance (Commission Notice of 26.1.2017 - Guidance on the evaluation of Auxiliary Emission Strategies and the presence of Defeat Devices).

Generic test protocol: Version 10/08/2016

Application by the JRC: Version 10/08/2016

C. Laboratory Emissions Results

• Average results for the repeated tests

Туре	NOx $[mg/km]$	THC $[mg/km]$	$CO \ [mg/km]$	$\rm CO2~[g/km]$	PN [E+9/km]
NEDC Cold	47.1	14.8	156	202	10.4
NEDC Hot	146	3	20.4	185	28
NEDC w/o preconditioning Cold	61.7	14	130	203	70
NEDC after grade Hot	128	3.3	20.7	189	49.5
NEDC $+10\%$ Cold	89.8	11.2	144	218	18
NEDC + Load Hot	114	3.4	7	213	61.2
NEDC $+10^{\circ}$ C Cold	194	12.1	155	217	23
NEDC $+30^{\circ}$ C Cold	134	9.9	157	194	13.1
WLTC Cold	155	4.6	155	222	26.7
WLTC Hot	196	1.2	62.6	216	55.2

Table 4: Average laboratory emissions.

Figure 1: Emissions measured during laboratory tests. Error bars stand for min and max values. Numbers in the bars stand for the number of test. The horizontal line displayed on the CO₂ panel stands for the declared CO₂ emission factor displayed in the type approval certificate of the vehicle (179 g/km). The horizontal lines displayed on the CO and PN panels stand for Euro6 standards (500 and $6x10^{11} \#/km$ respectively). The red horizontal lines displayed on the NO_x panel stand for Euro6b standards including the indicative thresholds proposed in the Commission Guidance.

D. PEMS Emissions Results

Figure 2: Emissions measured during on-road tests. The complete panel displays the overall NOx emissions obtained during the complete routes (not processed according to the RDE rules). The Urban, Rural and Motorway panels display the detailed NO_x emissions over the different phases of the routes.

E. Comparison of Laboratory and PEMS results

Table 5: Average laboratory and PEMS emissions. NOx emissions display for RDE tests were processed according to the RDE3 rules. 'CF NOx' stands for NO_x conformity factor (NO_x emissions/NO_x Euro6 standards). 'RT NOx' are the recommended thresholds proposed in the Commission Guidance. 'CO₂ diff.' stands for the relative difference between the CO₂ measured and the declared CO₂ emission.

Туре	Repeats	NOx [mg/km]	CF NOx	RT NOx	CO2 [g/km]	CO2 diff. [%]
NEDC Cold	3	47.1	0.6	1	202	12.8
NEDC Hot	2	146	1.8	1.5	185	3.2
NEDC w/o preconditioning Cold	2	61.7	0.8	1.5	203	13.3
NEDC after grade Hot	2	128	1.6	1.5	189	5.4
NEDC +10% Cold	2	89.8	1.1	1.5	218	21.7
NEDC + Load Hot	2	114	1.4	1.5	213	18.8
NEDC +10°C Cold	2	194	2.4	1.5	217	21.2
NEDC +30°C Cold	2	134	1.7	1.5	194	8.4
WLTC Cold	2	155	1.9	5	222	24.1
WLTC Hot	2	196	2.4	5	216	20.5
RDE Route 1 (Esperia)	2	303	3.8	5	214	19.7
RDE Route 2 (Labiena)	2	286	3.6	5	215	20.1

Figure 3: Emissions measured during laboratory and on-road tests. Error bars stand for min and max values. Numbers in the bars stand for the number of test. On the top panel, the horizontal red lines stand for Euro6 standards and the recommended thresholds proposed in the Commission Guidance. On the bottom panel, the horizontal line stands for the declared CO_2 emission factor displayed in the type approval certificate of the vehicle (179 g/km).