Meeting with Henrik Hololei, Director General, DG MOVE and his Team

Brussels, 23 May 2017
Agenda

- Low carbon mobility
- Renewables in transport and vehicle efficiency standards post-2020
- Marine fuels: implementation of IMO decision
Life cycle GHG Impact: Nissan Leaf vs Mercedes A class

- **Nissan Leaf (current regulation/NEDC)**
- **Mercedes A (current regulation/NEDC)**
- **Nissan Leaf (with manufacturing & recycling life cycle, EU mix, RDE)**
- **Mercedes A (with manufacturing & recycling life cycle, RDE)**

Sources: Concawe 2017, based on studies from Trondheim University, JEC & ICCT
Life Cycle comparison of e-vehicles with similar sized ICE vehicles

The analyses demonstrate:

- Marketing and regulating e-vehicles on a claim of zero tail pipe CO$_2$ emissions does not represent the full picture

- Manufacturing of batteries for e-vehicles is CO$_2$ emissions intensive

- Replacing the battery before the normal end of life for the whole vehicle would result in a step increase in CO$_2$ emissions for the e-vehicle

- Our long term policy for vehicles and their energy should take account of the full life-cycle decision costs and benefits

- This gives us a clearer picture of how to allocate support for new technologies
Addressing air quality: Concawe study (2016)

Particulate Matters (PM):
- From Euro 4 onwards, dramatic reduction of PM levels from diesel vehicles, in both official certification tests and real driving conditions.
- The major contribution to the total primary PM emissions is and will be the domestic sector.
- By 2020, primary PM emissions from road transport will mainly consist of non-exhaust emissions from tyres, brakes or road abrasion (i.e. independent from the vehicle technology).

NOx:
- Euro standards have not been as successful at reducing NOx as for PM: reductions recorded in official certification tests, but not always achieved in real driving conditions.
- Transport is the main – but NOT the only - source of NOx in cities.
- EURO 6 is successful: Fully compliant diesel vehicles already on the road: e.g. BMW X5 with SCR technology.
- Addressing NOx in a cost-effective way:
 - Robust implementation of Euro 6, with RDE and WLTP
 - Support for Fleet turnover & removal of worst emitters
 - Enforcement of maintenance standards
 - Address residual areas of non-compliance through targeted measures (e.g. electric buses)
Addressing the Urban Quality challenge

Fleet turnover and full EURO6/RDE implementation substantially meets EU air quality objectives

Base case on a regular fleet turnover and a conformity factor is equal to 2.8 on average over the period.

The practical implementation of zero diesel scenario is questionable given the issues to address; timing to effectively achieve the fleet switch, public acceptance, infrastructure, and costs.

In the Base Case the level of population living by 2030 in likely compliant areas increases to 93% vs 95% for the zero diesel scenario.

In fact, the Base Case sees significant improvements in compliance by 2025 which reduces as time progresses; the incremental benefit in compliance terms even for this zero diesel scenario.

Source: Concawe - Aeris Europe, Urban Air Quality Study, March 2016
The forgotten incentive – lack of fuel tax
Current vehicle regulation can drive solutions that have very high carbon costs

INCREMENTAL COSTS (per vehicle):

- Manufacturing cross subsidy: ≈ €4k
- Government purchase grant: ≈ €5k
- Loss of fuel excise duties: ≈ €5k
- Less fuel savings: ≈ -€4k
- TOTAL: ≈ €10k

CO₂ savings

- 44g x 200k Km = 8800 Kg

Decarbonisation by electrification is expensive

* Manufacturer cross-subsidy, government purchase grant, loss of fuel excise taxes – adjusted for fuel savings
What about costs for the taxpayer?

Share of EVs in total EU car fleet
- 250,000,000 – Number of all cars in the EU
- 375,000 – Number of EVs in the EU
- 0.15% - EVs share in EU car fleet

Associated costs
- €10,000 – subsidy per car (see previous slide)
- €10,000 x 375,000 (no. of EVs) = €3,750,000,000

Economic burden to subsidize EVs
- 0.15% EVs share in EU car fleet - €3,750,000,000
- 1% - €25,000,000,000
- 5% - €125,000,000,000

Full fleet turnover at incentives
- 250,000,000 cars
- €2.5 Trillion!
Reducing Fossil Fuel imports to Europe. How much per car?

ICE vehicles – import value per car

- 135g/km: $3,200*
- 95g/km: $2,255*
- 75g/km: $1,780*

*Based on 200,000 km, crude oil $50/bbl. Diesel ICE cars

Battery Electric vehicles – import value per car

- TESLA (90 kWh): €92,000
- Volkswagen (24.2 kWh): €38,000
- KIA (27 kWh): €37,000

Car price
Fuel battery price: €22,500
Battery Cell price: €13,500?

*Based on fuel battery price €250/kWh. Battery cell cost €150/kWh

Note: BEVs - Tesla Model S 90D, VW e-Golf, Kia Souls EV
Icons credited to www.flaticon.com
Reduction of Import Dependency

- Electric cars may not reduce import dependency.

- We may swap oil ‘dependency’ for battery cell and battery materials dependency.

- Europe is far behind on battery manufacture.

- The full picture of battery materials supply should be examined before we can show improvement in international trade balance from large-scale light transport electrification.
Industrial Opportunity for Europe?

• **EU – Leader in the ICE production, especially diesel**

• **BATTERIES:** EU car producers use batteries developed by Asian producers, such as Panasonic, LG Chem and Samsung.
 - Panasonic supplied 38% of the electric vehicle batteries over the past 12 months
 - LG Chem – Audi, Renault, Daimler, Volvo
 - Panasonic – Volkswagen, (Tesla & Ford)
 - “In a five-year time frame, we are looking at Panasonic, LG and Samsung SDI making up about 80% of the market” Cosmin Laslau, a battery expert with Lux Research (WSJ, Auto Industry’s Ranks of Electric-Car Battery Suppliers Narrow)

• **JOBS:** “A switch to sales of only zero-emission cars puts thousands of German auto industry jobs at risk since the powertrain of an electric car requires only a tenth of the staff to be assembled when compared with a combustion-engined equivalent, which needs more workers to assemble cylinders, spark plugs, and gearboxes” (source: Reuters, 8 Sept 2016, “German push to ban combustion-engine cars by 2030 wins support”)
Renewables in transport: RED II

- **Transport** can play an **important role** in achieving the **27% renewables in 2030 target**

- The combination of **high quality liquid fuels (including sustainable biofuels)** and **efficient internal combustion engine** is a very effective way to:
 - *Reduce (Life-cycle) GHG emissions from transport*
 - *Address air quality issues*
 - *Increase use of renewable energy*

- **Two big advantages of biofuels vs. other alternative technologies in transport:**
 - *No need of new infrastructures*
 - *The GHG benefits can be delivered immediately by the current fleet of cars and trucks*

- The development of **advanced biofuels** requires R&D and long-term investments. **Therefore regulatory certainty and predictability** are essential. The advanced biofuels mandate provides a strong investment signal.

- In some cases the development of advanced biofuels may be underpinned by and stem from the evolution of the production of **first-generation biofuels**.
Renewables in transport: RED II

- **All biofuels** – both first-generation and advanced – must count provided they meet robust and science-based **sustainability criteria**.

- **Advanced biofuels** can be increased by promoting diversified biofuel production technologies and a broad range of raw materials including waste-based feedstocks.

- All biofuel **targets** (including the proposed one on advanced biofuels) must be **realistically achievable**. A “reality check” is needed and, if necessary, target must be revised.

- The **single market** needs to be preserved.

- **Marine and aviation**: support for a multiplier factor to stimulate use of sustainable biofuels.

- The **RED II is blind to the GHG benefits of certain technologies**, and as such does not provide incentive to the development of e.g. very efficient non-renewable liquid fuels or the use of sustainable renewable hydrogen in the fuels production process. Solutions should be sought to allow such developments to be captured under the RED II as an **alternative compliance mechanism**, expressed for example as an equivalent renewable advanced fuels.
Vehicle efficiency standards post-2020

In the short-term, CO₂-vehicle efficiency standards should:
- Be based on ambitious but realistic TTW targets which enable the contribution of all vehicle drive-train technologies in a technology neutral way.
- Recognise the contribution of fuel improvements in the vehicle emission standards. Biofuels’ GHG emission savings should be accounted for.
- Evaluate how an LCA approach could be introduced in vehicle CO₂-efficiency regulation, in-line with the review process of the regulation.
- Revise the non-compliance penalty downwards.

In the medium-term
- Assess the real GHG savings based on LCA CO₂ emissions.

In the long-term
- Overcome the current sectoral regulatory approach and adopt an economy-wide approach to reduce emissions.
- A regulatory transition should lead to the eventual convergence of the cost of GHG emission reduction in transport and other sectors.
Marine fuels: implementation of IMO decision

• The IMO has taken its decision for a global switch to 0.5 % sulphur in marine fuels as of 1.1. 2020 (outside of the SECAs)

• **Global** compliance with IMO’s decision is needed to avoid:
 • Competitive distortions between regions, ports & fuel suppliers; and
 • Reputational risks for the relevant industries.

• All world regions should ensure
 • Consistent implementation of IMO’s decision and of any agreed transitional measures.
 • Effective enforcement measures in both national and international waters.
 • Global adoption of uniform, clear and easily enforceable measures.
 • Fuel quality guidelines, while maintaining options open to allow development of new fuel formulations.