This is an HTML version of an attachment to the Freedom of Information request 'Meetings with stakeholders on renewable gas (UPDATE)'.


Ref. Ares(2018)6194364 - 03/12/2018
GAS INDEPENDENCE IN FRANCE IN 2050
A 100%renewable gas mix in 2050?
S T U D Y   S U M M A R Y




This document is published by ADEME
ADEME
20, avenue du Grésillé
BP 90406 | 49004 Angers Cedex 01 FRANCE
Contract number: 16MAR000891
The study was initiated by ADEME and GRDF; it was jointly managed 
by ADEME, GRDF and GRTgaz, and coordinated by ADEME: Guillain 
Chapelon (GRDF), Emmanuel Combet (ADEME), David Marchal (ADEME), 
Laurent Meunier (ADEME), Ony Rabetsimamanga (GRDF), Alban Thomas 
(GRTgaz), Anne Varet (ADEME), Isabelle Vincent (ADEME)
Study completion was entrusted to a consortium comprising  
SOLAGRO and AEC and coordinated by SOLAGRO:  
Quentin Bouré (AEC conseil), Marc Cherrey (AEC),  
Florian Coupé (AEC conseil), Christian Couturier (SOLAGRO),  
Simon Métivier (SOLAGRO)
Various experts were appointed as members of the steering committee 
or contributed to the work: Loïc Antoine (ADEME), Marc Bardinal 
(ADEME), Guillaume Bastide (ADEME), Luc Bodineau (ADEME), Valérie 
Bosso (GRDF), David Canal (ADEME), Alice Chiche (ARTELYS), Aicha El 
Khamlichi (ADEME), Sylvain Frédéric (GRDF), Bruno Gagnepain (ADEME), 
Catherine Leboul-Proust (GRDF), Stéphanie Legrand (GRDF), Philippe 
Madiec (GRTgaz), Arnaud Mainsant (ADEME), Sabra Meradi (GRTgaz), 
William Monin (GRDF), Jean-Michel Parrouffe (ADEME), Jean-Christophe 
Pouet (ADEME), Bertrand de Singly (GRDF), Olivier Théobald (ADEME), Éric 
Vidalenc (ADEME)
Graphic creation: Créapix
Printing: Printed in France  
on FSC Mixte paper, European Ecolabel certified 
Frazier printing - ISO 14001 certified
This work is available on-line at www.ademe.fr/mediatheque
Brochure ref. 010521
ISBN:
 979-10-297-1055-1 - January 2018
Legal registration: ©ADEME Éditions, January 2018
Any full or partial representation or reproduction made without the consent of the author or its beneficiaries 
or successors in title is considered illegal under the terms of the French intellectual property code (Art L 122-4) 
and constitutes a counterfeit offence punishable under criminal law. Art L 122-5 only permits copies or 
reproductions that are strictly reserved for the personal use of the copier and not for collective use, and any 
analyses and short citations justified by the critical, pedagogical or informative nature of the work in which 
they are inserted, subject to compliance with the provisions of articles L 122-10 to L 122-12 of the afore-
mentioned code on reprographic reproduction.



A 100% RENEWABLE GAS MIX IN 2050?
STUDY SUMMARY
EDITORIAL
The  fight  against  climate  change,  according  to  the  ambitions  adopted  by  the 
Paris agreement, relies on the success of the energy transition. France has made 
commitments to reduce its greenhouse gas emissions on world-wide, European 
and national levels. France Climate Plan, initiated in July 2017 by Nicolas Hulot, 
France’s  Minister  of  the  Ecological  and  Inclusive  Transition,  re-affirmed  the 
proactive strategy for the energy transition with ambitious objectives, such as 
achieving carbon neutrality by 2050.
ADEME has been contributing since 2013 
Aside from observing that there is a theoretical 
through regular publications of energy-
potential source of renewable gas that could 
climate scenarios. To update these scenarios 
exceed the level of demand proposed for 
and broaden the scope of discussions, 
2050 by ADEME's 2035-2050 energy-climate 
more exploratory prospective studies are 
scenario, a number of conditions to achieve 
carried out to assess options with more 
100% renewable gas by 2050 have also 
open hypotheses on certain specific vectors 
been  identified.  Although  these  ambitious 
© J. Chiscano
or industries. The purpose is to identify 
results encourage immediate, accelerated 
possibilities, not to propose a public policy 
deployment of agricultural anaerobic 
scenario. This then enables all those involved 
digestion projects, they also highlight the 
to  reconsider  these  options  and  to  redefine 
importance of optimising the use of biomass 
their perception of the future to build shared 
sources by improving the balance between 
visions of tomorrow.
the different energy vectors (heat, electricity 
This study about a 100% renewable gas mix by 
or  gas).  This  confirms  that  to  improve  the 
2050 follows several publications released in 
sustainability of our energy system, we must 
2016 and 2017 with regards to the evolution of 
strengthen the interactions between the 
the energy mix, and is focussed on the second 
energy vectors and optimise their synergies, 
most consumed grid energy in France, which 
at  various  territorial  scales.  These  findings 
is  gas.  ADEME,  in  an  effective  col aboration 
will help to update the ADEME energy-climate 
with GRDF and GRTgaz, has explored the 
scenario in 2019.
technical and economic feasibility of 100% 
renewable gas in 2050, based on ADEME's 
Bruno LECHEVIN
2035-2050 energy-climate scenario. This 
document does not provide a roadmap to 
achieve 100% renewable gas by 2050; it 
explores the conditions of feasibility and 
obstacles of such an ambition. The results are 
therefore based on sensitivity analyses and 
various hypotheses regarding the renewable 
gas production mix.
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 1

CONTENTS
1. Context and objectives ..............................................................................................................................3
2. Study process ...............................................................................................................................................................................................4
3. Results ................................................................................................................................................................................................................................................5
 

3.1.  A theoretical potential of 460 TWh of renewable gas .................................................................5
 
3.2.  Gas demand from 276 to 361 TWh in 2050 
could be met by renewable gas 
in the four scenarios studied….............................................................................................................................................6
 
3.3.  … for an overall cost of 100% renewable gas 
between €116 and 153/MWh… .............................................................................................................................................8
 
3.4.  … enabling the avoidance of direct emissions of approximately 
63 MtCO2/year ........................................................................................................................................................................................................8
4. Findings .......................................................................................................................................................................................................................................9
 
4.1.  A gas system compatible with 100% renewable gas, 
with necessary evolutions..............................................................................................................................................................9
 
4.2.  The complementarity of the gas network with the electric grid 
represents a key success factor for 
a highly renewable energy mix .............................................................................................................................................9
5. Limits and perspectives ...................................................................................................................10
6. Method and hypotheses ..................................................................................................................10
 
6.1.  The gas demand scenario in 2050 ..............................................................................................................................11
 
6.2.  Assessment of potential renewable gas production ..............................................................13
 
6.3.  Assessment of grid adaptation ........................................................................................................................................16
PAGE 2
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 

1. CONTEXT AND OBJECTIVES 
After an initial study carried out by ADEME on 
This is a prospective technical study and not a 
the role of renewable electricity in the energy 
political scenario.
mix – which revealed notably that a very 
The  energy  efficiency  improvements  and 
high level of renewable electricity could be 
reduction in energy demand used in this 
envisaged in technical and economic terms – 
study are those indicated in the ADEME 
this study focussed on the second most 
2035-2050 energy-climate scenario update  (1). 
consumed grid energy: the gas vector.
The total demand in 2050 for mains gas is 
In this period of great importance to the 
therefore around 300 TWh, compared with 
energy transition, this work carried out 
today’s figure, 460 TWh.
in col aboration by ADEME, GRDF and 
The main goal of this study is to analyse 
GRTgaz contributes to the discussions 
the conditions of technical and economic 
centred on France's proactive strategy 
feasibility of a gas system based entirely 
to reduce its CO2 emissions while  (100%) on renewable gas by 2050. It aims to 
controlling its energy consumption  answer the fol owing questions:
and developing renewable energies. 
 
   How much renewable or recoverable gas could be available in 2050 in mainland 
France? Would this be enough to satisfy the demand for gas every day and 
throughout the network?
   What changes would have to be made to the networks or production industries?
   What are the constraints and what technical flexibility is available?
   What would be the impact on the average cost of gas delivered?
Study scope:
• The study is centred on mainland France: the 
• This study does not identify the roadmap 
resources are national and the possibilities 
from now until 2050;
of importing renewable gas are not included;
• This study does not aim to optimise the 
• The study concentrates on mains gas: it does 
overall energy system (all vectors, all 
not look into all the potentials for usage 
usages).
increase outside the renewable gas network 
(e.g.: biogas co-generation) or via third 
party infrastructures (e.g.: decentralised 
hydrogen production/consumption or 
dedicated network) (2);
(1)  http://www.ademe.fr/actualisation-scenario-energie-climat-ademe-2035-2050. Hereinafter, this document will be referred to as "ADEME's 
2035-2050 energy-climate scenario".
(2)  However, it does not exclude the possibility of a certain proportion of direct injection of hydrogen into the gas networks.
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 3


2. STUDY PROCESS
The study was implemented as fol ows 
(see figure 1 and details in paragraph 6 - Methods and hypotheses)
1- The theoretical potentials of available 
3-  Four  scenarios  were  defined  to  assess 
renewable resources corresponding to 
different  hypotheses,  particularly  with 
three production sectors were assessed: 
respect to the resources:
•  "100% R&REn" (Renewable and 
ANAEROBIC 
Production of methane 
Recovered Energies): biomass and 
DIGESTION
using micro-organisms that 
resource usages are similar to ADEME's 
break down organic matter
2035-2050 scenario, substituting some of 
the wood and heat co-generation usages 
Production of methane 
with gas;
PYRO- 
from organic matter, 
•  "100% R&REn with high 
GASIFICATION
mainly wood, via a thermo-
chemical process
pyrogasification":  the same as 100% 
R&REn, but gas usage is enhanced, by 
increasing the production of renewable 
Production of methane by 
gas  by  pyrogasification  using  wood 
electrolysing water using 
renewable electricity and 
resources made available by the 
POWER-TO-GAS
then methanation of the 
lesser  development  of  wood-fired  co-
hydrogen produced in the 
generation and wood for heat networks. 
presence of carbon dioxide
This scenario corresponds to a higher 
demand for gas;
These production sectors are described in 
•  "100% R&REn with limited biomass 
paragraph 6.2.1.
for gas usages": the same as 100% 
This assessment of the potential of 
R&REn but with biomass resources 
available resources takes into account 
limited to 80% of their potential. The 
durability criteria (3).
objective is to assess the impact of 
2- Starting from the slightly adjusted 
resource  mobilisation  difficulties  (e.g. 
demand of ADEME's 2035-2050 scenario, 
under-estimated environmental impacts 
the production mix was estimated, 
or social acceptability, etc.) and/or 
mobilising the production sectors in 
development  difficulties  of  the  less 
increasing order of cost, while including the 
mature sectors;
necessary adaptation of the gas network.
•  "75% R&REn": biomass and resource 
usages are similar to ADEME's 2035-2050 
scenario, natural gas represents 25% of 
final energy consumption.
FIGURE 1: STUDY METHODOLOGY
Description of the resource 
Prospective 
potential per input
framework of ADEME 
(2017 update)
Gas demand
•  Geographic distribution
•  Procurement costs

Balance of 
• Transformation costs
supply/
ACTUALISATION DU SCÉNARIO ÉNERGIE-CLIMAT
demand 
ADEME 2035-2050
over one year
Mobilisation in 
increasing order of cost
Demand 
that is 
Four GAS 2050 scenarios 
(3) In particular, specific energy 
localised 
depending on:
in space and 
TOTAL 
crops are excluded and  
time
Assessment of 
the resources used are  
•  Resource usage arbitration
COST 
network +  
not in competition with  
•  Resource limitation / sector
storage costs
OF THE GAS 
"raw material' usages  
• % R&REn in the gas mix 
SYSTEM
(agriculture, forest, wood 
industry and biomaterials).
PAGE 4
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 

3. RESULTS
3.1.  A theoretical potential of 460 TWh of renewable gas

FIGURE 2: RESOURCE
700  AVAILABILITY AND POTENTIAL PRODUCTION
Power-to-gas (b)
TWh
600
'By-product' hydrogen
Solid Recovered Fuels (a)
Wood waste (a)
500
olysis 
Electricity
thanation 
Electr
Non-forest wood (a)
me
   Sawmill / black liquor related (a)
400
Recovery
olysis 
thanation 
Wood from forests (a)
Electr me
Crop residues
300
ation
Intermediary crops
asific
ation
og
Grass
200
Pyr
asific
og
Farm animal dejections
Biomass
Pyr
   Food-processing industry residues
100
Biowaste
Seaweed
Energy in HCV, except (a) in LCV and (b) electricity.
{obic  obic estionestionAnaerdigAnaerdig
0
input type
resource
sector
Primary
type
resources
Injectable
available
Primary resources
gas
in 2010
available in 2050
2050
The total potential of renewable  implies new practices and organisations for 
primary resources liable to produce gas 
agriculture and forests. Biomass resources 
is approximately 620 TWh. It is not in 
represent almost 390 TWh, 230 TWh of which 
competition with "raw material" (agriculture, 
come from wood and its derivatives, 130 TWh 
forest, wood industry and biomaterials) and 
from agriculture, 15 TWh from biowaste and 
food usages, which remain priority.
food-processing industries and 14 TWh from 
This is available potential before any 
seaweed. Electricity contributes 205 TWh. 
al ocation to competing energy usages (e.g. 
Recovered energies represent a little under 
energy wood can be used in a boiler), and 
25 TWh.
it  incorporates  durability  criteria  (specific 
Taking into account conversion efficiency, the 
energy crops are therefore excluded) (4). 
theoretical potential of primary resources 
Compared with the resources currently 
identified could produce up to 460 TWhHCV 
(2010) mobilised for energy production and 
of injectable renewable gas:
potential y convertible into gas, the 2050 
• 30% could be supplied by the mature 
estimated potential is much higher, which 
anaerobic digestion industrial sector, 
(4) Although currently permitted to a level of 15% in tonnage.
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 5

enabling the conversion of agricultural 
• 30% could be provided by power-to-gas in 
inputs, biowaste and seaweed residues to 
the context of a 100% renewable electric 
produce up to 140 TWhHCV of gas (5)(6);
mix to maximise the production of synthetic 
• 
40% could be supplied by the 
gas, i.e. 140 TWhHCV of gas (8).
pyrogasification sector from wood and its 
derivatives, Refuse-Derived Fuel (RDF) and 
a low proportion of agricultural residues, 
to produce up to 180 TWhHCV of gas (7);
3.2.  Gas demand from 276 to 361 TWh in 2050 could be met by 
renewable gas in the four scenarios studied…
Bearing in mind other usages of biomass, 
for the injection sectors depends upon the 
the potential of 460 TWhHCV of injectable 
level of mobilisation of the other usages (direct 
renewable gas is enough to meet the demand 
usage or co-generation). The production mix 
for gas in 2050 for a scenario similar to 
was defined after adjustment of demand for 
ADEME's energy-climate scenario ("100% 
each scenario and the available resources 
R&REn" with a demand of 293 TWh) but also a 
(see  figure  4);  the  resources  were  mobilised 
scenario in which the demand for gas is higher 
in increasing order of cost (see figure 11): the 
("100%  R&REn"  with  high  pyrogasification" 
anaerobic  digestion  and  pyrogasification 
with a demand of 361 TWh).
sectors were thus mobilised to their 
The adjusted demand (see figure 4) for each 
maximum limit; power-to-gas, which is the 
scenario takes into account different effects, 
most expensive, is the adjustment variable to 
such as arbitrations on usages of anaerobic 
balance supply and demand (described in the 
digestion and wood. The available resource 
Results  section, paragraph 6.4).
FIGURE 3: RENEWABLE GAS MIX IN THE FOUR SCENARIOS
100% R&REn
128
65 9
90
293 TWh
100% R&REn
with high pyrogasification 
128
138
9
85
361 TWh
100% R&REn with limited
Anaerobic digestion
biomass for gas usage
100
31
135
276 TWh
9
Pyrogasification-wood
Pyrogasification-RDF
75% R&REn
128
67
34
79
317 TWh
Power-to-gas
9
TWh
Natural gas
0
100
200
300
400
PCS
(5)  For crop residues and particularly straw, anaerobic digestion was preferred over pyrogasification because it enables stable carbon and 
nutrients (including nitrogen) to be returned to the soil.
(6) 94% efficiency determined by injectable methane (HCV) / biogas produced (HCV).
(7) 70% efficiency determined by injectable methane (HCV) / input (LCV).
(8) 66% efficiency determined by injectable methane (HCV) / electricity consumed.
PAGE 6
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 

FIGURE 4: ADJUSTMENT OF DEMAND AND BIOMASS RESOURCE USAGE SCENARIOS
 
 
250250
ect
 eff

47
 to 
 the
ations 
47
250
93
200
95
ding
93
200
)
45
95
 and cor
47
V
45
250
cation- 
 ac
LC
93
95
150
ifi
200

 2.3.),
197
ces
e arbitr
47
150
45

gas
sed
197
ctio
(TWh
9363
63
63
63
63
200
95
ea
-generation
ot u
63
150
 resour
197
45
100
H
Co
Pyro inje
N
100
63
63
63
150
 description,
77
197
50
79
75
100
Wood usag
50
 biomass
6377
63
35
79
6375
enario  of
35
1000
 sc
77
79
75
0
wn
50
 (see do
35
50
eak
77
79
75
ces
0
 br
35
0
 resour  the

ws
)
200200
 sho
HCV
 biomass
200

 of e also
150
30
150
 use  figur
estion usag
30
200
sag
n
sed
 the
150
30
-generation
ctio
 This
ot u
 on
ations (TWh
100
137
137
137
 6.1.).
137
137
137
150100
Direct u
Co
Inje
N
obic dig
30
ations
106106
100
thod,
arbitr
137
137
137
5050
 arbitr  me
Anaer
106
100
8 137 7
8 137 7
8
7
8 137 7
50
8
7
8
7
8
7
106
8
7
00
 various
50
 the  adjustment
8
7
8
7
8
7
8
7
0
  ) HCV
8
7
8
7
8
7
8
7
as 
0
 demand
293
361
276
317
293
361
276
317
 considering  (see
ed g
293
361
276
317
-to-gas
er

Adjust
293
361
276
317
 adjustments, w
demand (TWh
+ 75
120
 po
+ 75
120
 and
 demand

+ 75
9012090
 gas ation
HCV
+ 75
120
 the
+ 32+ 32
6090
ws ogasific
60
HCV
+ 7
 pyr
+ 7
+ 32
90
n
s-
e 4 sho  of
60
 TWh
- 10
30
eat
ation)
+ 7
- 10
 use
+ 32
30
eat
er
rbine (CT)
 figur
60
 h
286
direct u
 tu
 lesser
as demand (TWh
- 10
30
e: 
+ 7
00
-gas h
cation heat
o-gen
enarios,  or
f g
ifi
o-generatio
sage (  c
er
enc
- 10
30
r-to-heat
 sc
0
er-to
gas
nd
gas c
bustion
eat
-30
 the
ood u
 of  gr
Refer
e
-30
 of
e
0
Powe
Pow
Pyro
Bio
W age a
Com
eded
 each
-30
ation 
or
gy usage.
e
 demand
Adjustment o
ation 
ed biomass as usag
-30
NB: F on ener
with high
biomass
with high asific
as usag
ation 
asific

ed
e
100% R&REn100% R&REn
with high og
100% R&REn with limit biomass for g
75% R&REn
100% R&REn
as usag
75% R&REn
100% R&REn
ation og
100% R&REn with limit
for g
100% R&REn
pyrasific
75% R&REn
100% R&REn
pyrog
100% R&REn with limit biomass as usag
with high
for g
100% R&REn
asific
ogpyr

100% R&REn with limit
for g
75% R&REn
100% R&REn
pyr
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 7

3.3.  … for an overall cost of 100% renewable gas 
between €116 and €153/MWh
The total cost of gas consumed per MWh, 
gas usages in the "100% R&REn with high 
i.e. the sum of production costs (9) and 
pyrogasification" scenario does not result in 
network and storage costs, varies from 
significant cost differences. This is due to the 
€105 (for the "75% R&REn" scenario) to 
 
greater use of the pyrogasification sector, in 
€153 per MWh (for the "100%R&REn with 
which production costs are lower than for 
limited biomass for gas usages" scenario) – 
power-to-gas.
see  figure  5.  These  costs  are  similar  to  the 
The "100% R&REn with limited biomass 
€120-130/MWh calculated for electricity in 
for gas usages" scenario also enables 
the  study "A 100% renewable electricity mix? 
100% renewable gas, but at a higher cost, 
Analyses and optimisations"(2015) (10).
approximately 15% more than the "100% 
Network and storage costs only represent a 
R&REn" scenario. This extra cost is due to 
small proportion: 15-20% of total cost (€20-
increased use of power-to-gas to compensate 
23/MWh).  In particular, the sole cost of 
for the lesser use of biomass sectors for 
connection, including limited distribution 
anaerobic  digestion  and  pyrogasification 
network reinforcement needs and reverse 
usages (limited to 80% of potential).
flow  stations,  represent  approximately 
Finally, the "75% R&REn" scenario, 
€3/MWh.
which keeps 25% natural gas in its mix, 
Although demand for gas is 23% higher 
costs 10-20% less, while applying a carbon 
than in the "100% R&REn" scenario, greater 
tax of €200/tCO2 in 2050 (11).
mobilisation of the biomass resources for 
FIGURE 5: TOTAL COST PER MWh OF GAS CONSUMED
Historic network + 
100% R&REn
€118-132/MWh 
storage
Connection 
100% R&REn with high
and adaptation for 
renewable gas
pyrogasification 
€116-127/MWh 
Natural gas
100% R&REn with
R&REn gas 1*
limited biomass for
€133-
gas usage
153/MWh 
R&REn gas 2*
75% R&REn
€105-111/MWh 
*  For each scenario, the two 
production cost variants (1 and 2) 
are differentiated by the electricity 
€/MWh
cost hypotheses used (see Cost 
0
20 40 60 80 100 120 140 160 180 200
assessment method, 6.4.).
3.4.  … enabling the avoidance of direct emissions  
of approximately 63 MtCO2/year
These 100% renewable scenarios would 
in 2050. The avoided emissions would 
enable direct emissions of approximately 
represent around 45 MtCO2/year for the 75% 
63 MtCO2/year (12) to be avoided,  R&REn scenario.
representing €12.6 billion for a shadow 
This estimation does not include possible 
value of carbon of €200/tonne of CO2 
modifications of the carbon sink.
(9) Renewable gas production costs are described in detail in part 6.4.
(10) http://www.ademe.fr/mix-electrique-100-renouvelable-analyses-optimisations.
(11)  The price of natural gas in 2050 is taken to be €42/MWhHCV , a hypothesis identical to that of the study on ADEME, ARTELYS, ARMINES-
PERSEE et ENERGIES DEMAIN, "Un mix électrique 100 % renouvelable ? Analyses et optimization" (A 100% renewable electricity mix? 
Analyses and optimisation), 2015. This price estimation is provided by World Energy Outlook. The carbon tax of €200/tCO2 increases 
this price by €44/MWhHCV i.e. a price of €86/MWhHCV.
(12) Emissions for a scenario in which the reference demand (286 TWh) is 100% fulfil ed by natural gas. The figure of 63 MtCO2 takes into account 
a zero emission factor for biomethane. With a factor of approximately 23.4g/kWh, the estimated fal  in emissions would be 56 MtCO2.
PAGE 8
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 

4. FINDINGS
4.1.  A gas system compatible with 100% renewable gas,  

with necessary evolutions
Huge production of renewable gas wil  
Regarding the evolution of the resources to 
require more decentralised management of 
be mobilised to achieve 100% renewable gas, 
the network than at present:
changes will also be required beyond the gas 
• the study reveals that it is possible to 
system itself:
collect most of the resources disseminated 
• in the agriculture sector, notably via the 
in rural areas without massive use of road-
generalisation of intermediate crops, and 
transported gas or other innovative and 
anaerobic digestion as an energy and 
non-mature solutions: the cost of the 
agronomic tool,
col ection networks to be built represents a 
• in the forestry sector and wood industry, 
low proportion of the overall cost (2-3%),
via the development of sustainable, 
• a number of technological solutions already 
dynamic forestry (positive carbon footprint, 
exist to make the gas network bidirectional 
preservation of biodiversity) respectful of 
(reverse flow, meshing), the anticipation and 
the hierarchy of usages (material wood, then 
optimisation of their deployment will enable 
energy wood).
costs to be control ed,
• 
transport and storage infrastructures 
continue to represent key elements to 
ensure the balance between supply and 
demand, notably during cold spel s.
4.2.  The complementarity of the gas network with the electric 
grid represents a key success factor for a highly renewable 
energy mix
This study supports the fact that at a high 
of the gas network. It will also provide an 
level of renewable energy production, the 
additional source of renewable gas for the 
gas and electric systems will interact strongly 
gas vector (34-135 TWhHCV).
and evolve together:
• Renewable gas will help to balance the 
• 
Power-to-gas will enable inter-seasonal 
highly renewable electric system with 
storage of electricity and geographic 
peaking thermal power plants supplied by 
optimisation of the electric system via 
renewable gas (10-46 TWhHCV depending on 
the transport and storage infrastructures 
the scenarios).
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 9


5. LIMITS AND PERSPECTIVES
• This study is not an overall optimisation 
• The study does not assess a certain number 
of the energy system; it does not indicate 
of external elements. For example, in al  
the optimal proportion of renewable gas 
the scenarios, the mass development of 
in technical and economic terms based 
renewable gas helps to strengthen France's 
on  defined  climatic  or  environmental 
energy independence and has a positive 
objectives.  Final  consumption  figures  in 
effect on the French economy as a whole, in 
usages and annual volumes are input data 
terms of trade balance (at present, almost 
for the study, taken from ADEME's 2035-
all gas is imported, represented a total 
2050 energy-climate scenario. The macro-
of approximately €10 bil ion per year (13)), 
economic balance will be carried out 
economic activity, CO2 emissions avoided. 
subsequently by ADEME in 2019.
It could foster job creations with the 
• The study does not model the time line of 
deployment of around 10,000 production 
the transition between the current situation 
units. These externalities were not 
and the scenarios presented.
quantified in the study.
•  The  hypotheses  considered  to  define 
• Other scenarios could be envisaged, with 
the potentials of the various resources, 
different arbitrations on the biomass or gas 
particularly those of biomass, include 
usages in 2050. For example, these scenarios 
uncertainties (changes to agriculture 
could explore the optimal vector breakdown 
and forest systems, social acceptability 
to  meet  final  demand  or  explore  other 
of projects, environmental review of the 
usages with higher added value to reduce 
industrial sectors, etc.) the assessment of 
CO2 emissions in other sectors (industry, 
which must be continued.
transport, etc.).
6. METHOD AND HYPOTHESES
The study considers a single scenario for the final demand for gas in 2050 and explores a number 
of gas supply scenarios.
FIGURE 6: STUDY METHODOLOGY
Description of the resource 
Prospective 
potential per input
framework of ADEME 
(2017 update)
Gas demand
•  Geographic distribution
•  Procurement costs

Balance of 
• Transformation costs
supply/
ACTUALISATION DU SCÉNARIO ÉNERGIE-CLIMAT
demand 
ADEME 2035-2050
over one year
Mobilisation  
in increasing order of cost
Demand 
that is 
Four GAS 2050 scenarios 
localised 
depending on:
in space and 
TOTAL 
time
Assessment of 
•  Resource usage arbitration
COST 
network +  
•  Resource limitation / sector
storage costs
OF THE GAS 
• % R&REn in the gas mix
SYSTEM
(13)  "Bilan énergétique de la France pour 2015" (Energy review for France for 2015), November 2016, SOeS.
PAGE 10
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 

The study is based on four major phases, as 
•  Balancing of supply/demand and network 
indicated in figure 6:
adaptations required: this is carried 
•  Adjustment of demand in 2050: annual 
out at department scale using the data 
demand  defined  on  the  basis  of  ADEME's 
described above and a vision of the current 
2035-2050 scenario (2017) is adjusted for the 
network instal ation (see description of 
four scenarios. It is broken down to the level 
paragraph 6.3.). Connection and network 
of the town and with daily load graphs.
adaptation costs are evaluated, as are 
•  Characterisation of the renewable gas 
storage requirements.
offer in 2050: the offer is based on already 
•  Study  of  4  scenarios  defining  4  offer 
existing  scenarios  regarding  the  different 
variants.  They enable the evaluation of 
potentials. It is then broken down to the 
different effects: greater or lesser al ocation 
level of the department, even canton. 
of the biomass resource to the production 
The evolution of production costs in the 
of gas (competition between energy 
various production sectors, according to the 
vectors, underestimated constraints, etc.), 
mobilised resource, is evaluated.
preservation of a proportion of natural gas 
in the gas mix.
6.1.  The gas demand scenario in 2050
The prospective framework 2050 is based on ADEME's 2035-2050 energy-climate scenario, 
updated in 2017, which describes the final annual demand for energy for each sector, usage and 
energy vector.
SUMMARY OF ADEME'S 2035-2050 ENERGY-CLIMATE SCENARIO
Final demand for energy in TWh
2010
2035
2050
1,733
- 29%
1,221
953
- 45%
The percentages indicate the fall in final demand for energy compared with 2010:
2035
2050
Share of renewable energy in final demand (according to 3 offer variants)
2010
2035
2050
10%
34%
46%
-
-
41%
69%
Renewable energies
Conventional energies
The percentages indicate the variation in the proportion of renewable sources in the energy mix (according to the 3 variants)
GG emissions in millions of tons of CO2 eq. (CO2, CH4, N20)
1990
2035
2050
529
- 51%
260 - 70% - 72% 158-146
The percentages indicate the fall in CO2 emissions compared with 1990:
2035
2050
READING: The 2017 energy-climate scenario covers all energy consumption in mainland France (excluding 
consumption by international air traffic). It describes the development of renewable energy sources and 
technologies. The proportion of renewable energy evolves according to three variants of the electric mix. 
The same therefore applies to greenhouse gas emissions (CO2, CH4 and N2O).
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 11

The prospective framework is based on a 
on the electric system linked to the "gas" 
proactive scenario aimed at energy efficiency 
scenario. In this exercise, the electric 
and optimisation, with an overall volumes 
system is determined by the level of 
reduction in 2050 of almost 35% compared 
power-to-gas used. The combustion 
with 2015.
turbine (CT) requirement is lower in 
The 2035-2050 energy-climate scenario thus 
the scenarios in which power-to-gas is 
served as a basis to determine the level and 
developed (15).
composition  of  the  final  demand  for  gas  in 
2. Demand decrease due to:
2050 (see table 1), and the use of energy 
•  pyrogasification 
and 
power-to-gas 
resources excluding gas usages (e.g.: wood 
conversion technologies co-produce 
for boilers).
heat, which can partial y replace "gas" 
heat (16),
TABLE 1: EVOLUTION OF FINAL MAINS GAS CONSUMPTION
•  power-to-heat (17) generates heat which 
TWh
2015
2050
Evolution
can partial y replace "gas" heat. The 
contribution of power-to-heat depends 
Residential
150.8
49.2
-67%
on the electric system linked to the 
Offices 
85.3
13.2
-84%
scenario, and therefore on the level of 
Industry
152.5
99.3
-35%
power-to-gas involved.
Transport
0
106.1
-
The adjusted demand values are indicated in 
figure 4 - Adjustment of demand and biomass 
Agriculture
2.9
2
-30%
resource usage scenarios.
Other (14)
45.2
16.4
-64%
A model is used to describe the demand at 
Total excluding power 
town level, per day and according to several 
generation
436.5
286.3
-34%
sets of weather data to take into account 
particularly warm or particularly cold 
The reference demand taken from ADEME's 
years (18), and daily cold spel s. The daily load 
2035-2050 energy-climate scenario is  graphs for 2015 and 2050 were model ed. The 
adjusted for each of the scenarios. It takes 
demand for gas for electricity production, 
into account different effects:
notably in winter, presents larger power 
1. Demand increase related to:
demands than today (19). In 2050, there is a 
• 
the substitution of usages initial y 
significant drop in consumption in winter due 
provided by other vectors (heat, directly 
to the reduced gas requirements for heating 
or via co-generation),
in residential and office buildings. In summer, 
• peak electricity production (combustion 
energy savings are compensated by the 
turbines); the quantity required depends 
increase in transport usage  (20).
(14) Losses, water and waste sector, internal branch consumption, co-generation, refinery sector.
(15)  Additional capacity from wind farms and solar farms set up to enable higher power-to-gas production also ensure better cover of the 
demand for electricity and thus reduce, to a certain extent, the use of peak production means, such as gas combustion turbines (CT), in 
terms of both capacity and energy.
(16)  The heat efficiency figures used are 15% for pyrogasification and 23% for power-to-gas. Only 30% of this heat is considered to be 
recycled and replaces heat produced from gas.
(17)  Power-to-heat is a process that consists in using electric boilers (resistance or heat pump) in addition to fuel-powered boilers or thermal 
processes. These electric systems are triggered for surplus electricity production to shed load from thermal facilities.
(18)  All the sectors take into account a heat-sensitive effect, except the electricity production sector, which is exogenous to the model. Global 
warming was taken into account, based on the sets of data from Météo France's Aladin model 
(scenario RCP 4.5), see http://www.drias-climat.fr/accompagnement/sections/175
(19)  The demand for gas for electricity production depends on the scenario and the power-to-gas contribution, which determines the electric 
system associated.
(20)  In ADEME's 2035-2050 energy-climate scenario, gas fuel represents 48% of final energy in the transport sector.
PAGE 12
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 

6.2.  Assessment of potential renewable gas production
6.2.1. RENEWABLE GAS PRODUCTION CHANNELS
FIGURE 7: THE DIFFERENT PRODUCTION CHANNELS OF RENEWABLE GAS
Algaculture
Agriculture
Waste
Trees and forests
Electric
system
Industry  CO2
Biodegradable 
Woody matter,
matter
cellulose
Electricity
By-product
hydrogen 
Anaerobic
Pyrogasification
Electrolysis
digestion
Biogas CO
CO
2
2 Syngas
Hydrogen**
Purification
Methanation
Methane
Direct usage
Local usage
Network 
injection
* "Pyrogasification" includes hydrothermal pyrogasification of seaweed.
** Hydrogen can also be used directly for various usages; this is not included in this study.
Renewable gas comes from three main 
•  Pyrogasification: thermo-chemical meth-
sectors:
od, in the broad sense, enabling production 
•  Anaerobic digestion: biological method 
of a synthetic gas, cal ed syngas, (mainly 
using micro-organisms to break down organic 
composed of methane, hydrogen, carbon 
matter and produce a mixture cal ed biogas, 
monoxide and carbon dioxide) from organic 
mainly composed of methane and carbon 
matter. The process can be completed by 
dioxide.  After  purification,  biomethane  has 
methanation or separation to produce 
thermodynamic properties equivalent to 
a gas whose thermodynamic properties 
those of natural gas. The organic matter comes 
are equivalent to those of natural gas. 
from agriculture (farm animal dejections, crop 
Pyrogasification  mainly  concerns  dry 
residues, intermediary crops, grass), industry 
woody matter or cel ulose: wood and its 
(by-products and waste from food-processing), 
derivatives, straw and various woody by-
sludge from urban sewage processing plants, 
products from agriculture. It may also 
and household and food waste.
involve waste, typical y RDF(21).
(21) Refuse-Derived Fuel  
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 13

•  Power-to-gas (PtG): process to convert 
These scenarios are "Factor 4" compatible, 
renewable electricity into synthetic 
i.e. they represent the agricultural and 
gas.  The  first  step  involves  electrolysis 
forestry component of scenarios aimed 
to produce hydrogen (power-to-H2). A 
at dividing by four our greenhouse gas 
second step can be added to convert the 
emissions, in all sectors, by 2050 (the 
hydrogen to methane via a methanation 
greenhouse gas reduction factor for the 
reaction (power-to-CH4). This reaction 
agriculture sector is 2) (22):
requires a source of CO2.
• 
concerning agricultural feedstock in 
It should be noted that the levels of 
2050, the potential used is mainly based 
maturity and the production processes 
on  SOLAGRO'S works, presented in the 
of  these  three  main  sectors  are  different. 
Afterres 2050 (23) prospective study;
Pyrogasification 
and 
power-to-gas 
• 
concerning wood resources, forest 
technologies are therefore considered 
extractions are estimated on the basis 
mature  in  2050  with  efficiency  increase 
of works by ADEME, IGN, FCBA (24) and 
hypotheses. However, this study does not 
INRA (25). The time line of these works was 
take into account possible technological 
2035, so the figures were extrapolated to 
breakthroughs or significant economies of 
2050, based on the "dynamic forestry" 
scale.  We  also  consider  that  the  first  two 
scenario drawn up by Ecofor (26);
sectors ensure basic production, while 
power-to-gas operates during periods of 
• biowaste potential estimates are mainly 
surplus electricity production, making the 
from the study entitled "Estimation 
des  gisements  potentiels  de  substrats 
use of power-to-gas discontinuous.
utilisables  en  méthanisation" (Estimation 
6.2.2.  MAIN HYPOTHESES TO 
of the potential sources of substrates for 
ASSESS FEEDSTOCK 
use in anaerobic digestion) (27). Finally, 
POTENTIALS
the potential of by-products from the 
food-processing industries comes from 
Feedstock availability is notably dependent 
the study entitled "Étude  du  potentiel  de 
on the evolution of agricultural and 
production  de  biométhane  à  partir  des 
forestry systems as well as energy systems 
effluents  des  industries  agroalimentaires" 
(electricity and heat).
(Study of the biomethane production 
Biomass potentials respect several of the 
potential from food industry waste) (28) ;
study's fundamental standpoints: non-
• seaweed is considered to be converted 
competition of bioenergies with food or 
to liquid fuel. Only the residues are 
with raw material usage, and increased 
considered for the gas sector, according to 
biological life in soil. The framework data 
the 2014 study by ADEME/ENEA/INRIA (29).
in terms of agriculture and forestry are 
The potential for renewable electricity 
based on integrated prospective scenarios 
to supply power-to-gas plants comes 
which take into account the diversity of 
from the data of the 2017 ADEME/ARTELYS 
the objectives for agriculture and forests. 
study (30) evaluating various optimised 
(22)  However, it is estimated that it would be possible to produce at least as much resource with a 'baseline' agricultural scenario, but the 
negative impacts involved would be more significant.
(23) SOLAGRO, "Afterres 2050", 2016.
(24)  ADEME, IGN, FCBA, "Disponibilités forestières pour l’énergie et les matériaux à l’horizon 2035" (Forest availabilities for energy and 
materials in 2035), 2016.
(25)  INRA and IGN, "Quel rôle pour les forêts et la filière forêt-bois française dans l’atténuation du changement climatique ?" (How can 
forests and the French forestry-wood industry help to attenuate global warming?)  June 2017.
(26)  Caulet, "Climat, Forêt, Société – Livre Vert" (Climate, forest, society - Green paper), 2015.
(27)  ADEME, SOLAGRO and INDDIGO, "Estimation des gisements potentiels de substrats utilisables en méthanisation" (Estimation of 
potential sources of substrates usable for methanation), 2013.
(28)  GRDF et SOLAGRO, "Étude du potentiel de production de biométhane à partir des effluents des Industries Agro-Alimentaires" (Study of 
the production potential of biomethane from food-processing industry waste), 2017.
(29)  ENEA, INRIA and ADEME, "Évaluation du gisement potentiel de ressources algales pour l’énergie et la chimie en France à horizon 2030" 
(Evaluation of potential seaweed resources for energy and chemistry in France in 2030), July 2014. Total conversion of seaweed into gas 
enables a production potential of up to 60 TWh, with efficiency approximately half that of the diesel + gas conversion.
(30)  ADEME and ARTELYS, "Un mix électrique 100 % ENR en 2050, quelles opportunités pour décarboner le système gaz et chaleur ?" (A 100% 
R&REn electric mix in 2050, how to reduce the carbon footprint of the gas and heat system), 2017.
PAGE 14
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 


configurations  of  the  electric  system  with 
The map below shows the injectable gas 
power-to-gas developed to a greater or 
potential per department and per sector. 
lesser extent: instal ed capacity per region, 
These potentials correspond to the entire 
operating time profile, electricity costs. 
available resource for an energy usage, 
In terms of recovered gas, RDF (Refuse-
before arbitration between the energy 
Derived Fuel) (31) and by-product hydrogen  (32) 
usages in competition.
potentials were also estimated, representing 
figures significantly lower than the renewable 
potentials in the strictest sense.
FIGURE 8: BREAKDOWN OF THE THEORETICAL POTENTIAL OF INJECTABLE GAS BY DEPARTMENT 
AND SECTOR IN 2050
10,000
5,000
1,000
Anaerobic digestion
Pyrogasification
Power-to-gas
(31)  GRDF, GRTgaz and S3D, "Étude sur les gisements valorisables par la filière pyrogazéification phase 1 : état des lieux bibliographique et 
'fiches intrants'" (Study of the sources recyclable by the phase 1 pyrogasification sector: bibliographic review and 'input datasheets'), 2017.
(32)  GRDF, ADEME and SOLAGRO, "Évaluation du potentiel de méthanation à partir de gaz industriels fatals (hydrogène et dioxyde de car-
bone)" (Evaluation of the methanation potential from by-product industrial gases (hydrogen and carbon dioxide)), 2017.
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 15

6.3.  Assessment of network adaptation 
The method used enables the demand for 
transported gas. If applicable, solutions to 
gas to be covered by the most competitive 
eliminate the constraints on the gas network 
renewable  sectors  first;  it  also  enables 
were  implemented  (meshing,  reverse  flow). 
consideration of the costs of adapting the 
These  solutions  are  presented  in  figure 
gas network (distribution and transport to a 
9.  These  profiles  and  solutions  were  then 
lesser degree) to convey this renewable gas to 
extrapolated to the whole of mainland 
consumers.
France.
The positioning of the production units 
The national supply-demand balance was 
and the necessary changes to the network 
examined for all the scenarios, using different 
(connection pipelines, storage capacities, 
sets of climate data to test the resilience of 
reverse  flow  stations)  were  evaluated  in 
the gas system to exceptional y hot or cold 
detail for four typical departments with 
years, and daily cold spel s.
different  profiles  in  terms  of  consumption 
The resilience of the gas system was studied 
and production density.
using different sets of climate date for each 
An optimisation algorithm then enabled 
scenario.
identification  of  a  new  configuration  for 
The storage requirements thus evaluated 
the gas network to enable the connection 
were compared with existing storage capacity, 
of production units involving a range of 
or storage capacity whose development has 
connection solutions: connection to the 
already  been  confirmed,  both  in  terms  of 
distribution network, connection to the 
volume and output.
transport network or connection via road-
FIGURE 9: ILLUSTRATION OF THE RANGE OF SOLUTIONS TO CONNECT AN ANAEROBIC DIGESTION 
PLANT
Road-transported 
Connection to
Connection to
gas injection
the distribution network
the transport network
Liquefaction station
and analyser
Compressor
Distribution
network
Transport network
injection station
injection station
Reception and
de-conditioning
station
HP/LP
Distribution
pressure
network
reducing
Distribution
meshing
station
network
injection station
Existing gas
distribution
Existing gas
network
transport
network
Reverse flow
Existing gas
stations
distribution
network
PAGE 16
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 



FIGURE 10: SUPPLY-DEMAND BALANCING AND STORAGE EVOLUTION (NORMAL YEAR)
2,500
120
100
2,000
80
1,500
60
1,000
Storage – TWh
40
Production and demand in GWh/day
Power-to-gas
500
20
Pyrogasification
Anaerobic digestion
Demand
0
0
Storage
.
.
.
eb
.
.
ug.
v.
1 Jan. 1 F
1 Mar 1 Apr 1 May 1 Jun. 1 Jul. 1 A
1 Sep 1 Oct 1 No
1 Dec.
6.4.  Full cost assessment
The cost assessment includes:
5. Power-to-gas with costs of €65-185/MWhHCV, 
•  production costs;
depending on the sector. The Power-to-
• distribution and transport costs;
CH4 sector fal s within the range of €105- 
• storage costs.
185/MWhHCV. It is important to note that 
Production costs are evaluated for each 
this cost also includes an average CO2 
sector, including resource procurement costs 
procurement cost of €10/MWh  (33)
HCV
. Power-
and transformation costs. These costs increase 
to-H2 costs less than Power-to-CH4 within 
with the level of resource mobilisation due to 
the range of €65-125/MWh. The ranges 
increasing mobilisation costs: for example, the 
presented depend on the hypotheses 
last TWh of wood would have to be extracted 
used for the purchase price of electricity. 
from  forest  areas  that  are  more  difficult  to 
The development of power-to-gas induces 
operate  (access  difficulties,  rough  terrain, 
extra costs (development of electricity 
degree of plot division, etc.).
production  means)  and  benefits  (drop  in 
In increasing order of cost, this gives:
flexibility  requirements  for  the  electric 
grid), which, depending on their economic 
1.  Recovered energies at €30-40/MWhHCV
al ocation, are reflected in two variants. The 
2.  RDF pyrogasification at €40/MWhHCV
"preferential price of electricity for flexible 
3. Anaerobic digestion, with costs below 
 
consumer" variant corresponds to a price of 
€80/MWh
electricity below its production cost price, 
HCV
4.  Biomass/wood pyrogasification with costs 
reflecting  the  economic  benefit  of  power-
of €80-120/MWh
to-gas for the electric system.
HCV
(33)  This cost varies from one scenario to another (€7 -17/MWhHCV, i.e. €41-77/tCO2), depending on access to CO2 sources. Anaerobic digestion 
and pyrogasification provide sources of relatively pure CO2 that are considered free: they are therefore used first. More costly solutions 
are then considered to meet the needs of each scenario: capture from combustion plants, transport, storage. 
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 
PAGE 17

The "price of electricity at spot market price' 
The costs of transport network 
variant corresponds to a higher cost of 
modification were deemed insignificant. An 
procurement (34).
initial analysis indicates that the size of the 
The costs of connection and network 
current transport network is compatible with 
adaptation  were then assessed. These 
the 2050 scenarios studied.
adaptations include the creation of reverse 
For the other existing network costs, it 
flow  compression  stations  between  the 
is assumed that network operation and 
distribution and transport networks. The 
renewal costs will remain similar to current 
exercise was carried out for four typical 
costs. The estimation was based on the 
departments. The results were extrapolated 
transport (ATRT5) and distribution (ATRD5) 
national y, taking into account the differences 
tariff evaluation.
in access to biomass resources (distance).
Storage costs were estimated on the basis 
of current costs, modulated according to the 
annual storage volume used in each of the 
modelled scenarios.
FIGURE 11: PRODUCTION COSTS OF THE DIFFERENT SECTORS IN 2050, 
ACCORDING TO THE OVERALL RESOURCE MOBILISED
Power-to-CH4 -  
180
price of electricity at 
the spot market price 
160
Power-to-CH4 -  
preferential price of 
electricity for flexible 
140
consumer 
Power-to-H2 -  
price of electricity at 
120
the spot market price 
Power-to-H2 -  
100
preferential price of 
electricity for flexible 
consumer 
80
Pyrogasification - Wood
Anaerobic digestion
Production costs (€/MWh)
60
Pyrogasification - RDF
40
By-product H2 anaerobic 
digestion
20
NB: for the anaerobic digestion and 
pyrogasification-wood sectors, pro-
duction costs depend on the overall 
0
level of mobilisation of biomass 
resources, including the resources 
0
50
100
150
200 mobilised for usages other than 
the production of injectable gas 
Resource mobilised in injectable gas equivalent (TWh )
(combustion).
HCV 
(34)  Depending on the level of power-to-gas production in the scenarios, the average cost of electricity procurement varies from €67 to €82/
MWh in the "price of electricity at the spot market price' variant and between €30 and €56/MWh in the "preferential price of electricity for 
flexible consumer" variant.
PAGE 18
A 100% renewable gas mix in 2050? – Technical/economic feasibility study 



ADEME 
COLLECTIONS
ADEME IN BRIEF
ADEME (the French environment and energy management 
ACHIEVEMENTS
ADEME as a catalyst: Players relate 
agency) contributes to the implementation of public policies in 
their experience and share their 
know-how.
the fields of environment, energy and sustainable development. 
It provides expertise and advice to companies, local authorities, 
EXPERTISE
ADEME as an expert: Reporting 
public authorities and private individuals to enable progress in 
the results of research, studies 
environmental initiatives. The agency also helps with project 
and group projects under its 
supervision.
funding, from research to implementation in the following areas: 
waste  management,  ground  preservation,  energy  efficiency  and 
FACTS AND FIGURES
ADEME as a reference: Providing 
renewable energies, raw material savings, air quality, reducing 
objective analyses based on 
noise pollution, transition to a circular economy and reducing food 
precise indicators that are regularly 
updated.
waste.
KEYS FOR ACTION
ADEME as a facilitator: Publishing 
ADEME is a public institution, under the joint supervision of the 
practical guides to help players 
Ministry for the Ecological and Inclusive Transition and the Ministry 
to implement their projects 
methodologically and/or in 
of Higher Education, Research and Innovation.
compliance with regulations.
HORIZONS
ADEME into the future: Proposing 
a prospective, realistic view of 
the challenges of the energy and 
ecology transition for a desirable 
future to be built together.


A 100% RENEWABLE GAS 
MIX IN 2050?
ADEME contributes to the discussions on France's proactive 
strategy, notably by examining possible trajectories for 
the French energies of the future and has been publishing 
energy-climate scenarios on a regular basis since 2013. This 
study, "A 100% renewable gas mix in 2050?", conducted by 
ADEME  in collaboration with GRDF and GRTgaz, follows 
on from the works published in 2016 - 2017, and concerns 
the second most consumed energy in France, gas. Herein, 
ADEME explores the conditions of the technical and 
economic feasibility of a gas system in 2050 based on 100% 
renewable gas.
The work is based on ADEME's 2035-2050 energy scenario, 
with  a  level  of  final  demand  for  gas  in  2050  of  around 
300 TWh,  compared  with  today's  figure  of  460  TWh. 
The results, based on sensitivity analyses and various 
renewable gas production mix scenarios, reveal that there 
is a theoretical potential source of renewable gas that could 
fulfil  this  lower  demand  for  energy  in  2050  at  an  overall 
cost of gas between €116 and €153/MWh. It would involve 
making some modifications to the gas system and notably 
development of the complementarity between the gas 
network and the electric grid. This confirms that to improve 
the sustainability of our energy system, we must strengthen 
the interactions between the energy vectors and optimise 
their synergies, at various territorial scales.
www.ademe.fr
ISBN 979-10-297-1055-1
010521