

Joint Research Centre

The European Commission's in-house science service

https://ec.europa.eu/jrc/

Serving society
Stimulating innovation
Supporting legislation

Real Driving Emissions (RDE) Portable Emission Measurement Systems (PEMS) Particle Number (PN) Implementing PN-PEMS for RDE procedures

B. Giechaskiel, F. Riccobono, P. Bonnel STU, IET, JRC, European Commission

Introduction

- Particles have negative health effects
- Smaller (ultra-fine) particles might be more dangerous due to their higher specific surface area
- Exceedance of Particulate Matter (PM) limits in cities is known. Particle Number (PN) has also been addressed recently:
- Contribution to total PN of:

Road transport:

Non-road transport (+ship traffic): 19%

Domestic combustion: 13%

^{*32% (}Greece) to 97% (Luxemburg)

PN emissions

France, Italy, Germany, Spain, UK and Poland are the top six PN emitters in the EU28 and together, their road traffic contributes nearly 3/4 (~72%) of the total traffic-induced PN emissions in the EU28.

Solid PN emissions

- Solid PN emissions projections
- Reduction of GDI emissions was necessary
- Limit of 6x10^11 p/km from 2017

Mamakos et al. (2013) AtmEnv 77:16-23

PM & PN

Particulate Matter (PM) on a filer Particle Number (PN) airborne

PN vs PM

Correlation at high concentrations 1 mg ~ 2x10^12 p

No correlation at low levels

Sensitivity of filter method
Artifacts on filter

RDE regulation for light-duty vehicles

- Regulation 715/2007 introduced the possibility to use Portable Emission Measurement Systems (PEMS) for Real Driving Emissions (RDE)
- Regulation 459/2012 focused on the emissions of Gasoline Direct Injection (GDIs) vehicles under real conditions
- Nov. 2012 call of interest for Particle Number PN-PEMS
- RDE Part of Euro 6 legislation, Appendix IIIA of 692/2008
- Monitoring phase until 2017/2018

Solid PN regulated method (PMP)

Diffusion charger (DC)

Project overview

- Theoretical evaluation of Diffusion Chargers (DC) (2013)
- Phase I (2013): Feasibility study
 - Assessment of application and performance of portable PN instruments relative to a reference (Particle Measurement Program PMP)
 - Update of specifications (i.e. dilution and sampling system and efficiency of diffusion-chargers)
- Phase II (2014): Confirmation of Phase I findings
 - Calibration procedures and more accurate estimates of uncertainty
- Inter-laboratory correlation exercise (2015)

CPC vs DC

- DC: Size dependency
- Possible to optimize them for typical size distributions

Efficiency *E* is defined as ratio of Reading *R* of instrument (after internal corrections) to the true inlet concentration *PN*

$$E = R / PN$$

Typically

$$R(DC) = c d_p^x$$

x=1.3 for soot

Giechaskiel et al. (2014) JRC report 26997

Calibration: Comparison DC - CPC

- Difference PMP DC for polydisperse aerosol
- Calibrated at 60 nm polydisperse GMD (example)
 - GMD=Geometric Mean Diameter

Acceptable difference: -33% to +50%

Then the same calibration could be used for all vehicles, technologies etc (diesel, gasoline, lightduty, heavy-duty, NRMM)

Geometric Mean Diameter

Phase I Testing

- Test vehicles
 - 3 GDIs
 - 1 PFIs (low emissions)
 - 1 DPF (regeneration)
 - 1 Moped (sub 23 nm challenge)
- Testing period:
 - Preparation phase: Sep Oct 2013
 - Main campaign: Oct-Dec 2013
- 5 PN-PEMS (DC based)
- Presentation available

Phase I Results

Riccobono et al. (2014) ETH

- DC based systems is a feasible option: Two of the 5 candidate systems had very good behaviour
- Thermal pre-treatment is necessary (like PMP)

Phase II Testing

- Test vehicles
 - 7 GDIs (5 were Euro 6) <10¹¹ ... 3x 10¹³ p/km
 - 2 PFIs (low emissions)
 - 2 DPF (regeneration)
 - 4 Motorcycles (sub 23 nm challenge)
- Testing period:
 - Preparation phase: Aug Oct 2014
 - Main campaign: Nov 2014
 - Extra evaluation: Dec 2014 +
- 8 PN-PEMS (3 CPC based)
- Report available

PN-PEMS Phase II Topics

- Calibration
- Real time signal
- Comparison with PMP systems
- Dependency on particle size
- Ambient temperature effect
- Challenge aerosol (solid sub 23 nm)
- Volatile removal efficiency (moped 2-stroke)
- Regeneration
- Bias and precision
- PASS or FAIL success rate
- Calibration at the CVS

Real time signals

- CPC based systems follow exactly the reference PMP
- DC based systems can have differences when the mean size of particles changes

PMP-TP vs PMP-CVS

Results within

0.95 - 1.40

Reasons:

- -Time alignment (<10%)
- -Exhaust flow accuracy (<10%)
- -Thermophoretic losses+
- -Diffusion losses (<5%)
- -Agglomeration (<15%)

PN-PEMS (CPC) vs PMP-CVS

Results within

0.85 - 1.50

Limited no of tests

PN-PEMS (DC) vs PMP-CVS

Results within

0.75 - 1.35

Optimized for GDIs

PN-PEMS (DC adv.) vs PMP-CVS

Results within

0.75 - 1.50

Concentration corrected for estimated mean size of particles

Phase II – Conclusions

- PMPs at CVS vs TP had differences of ±20% (±15%)
- Part of the difference applies only to particles:
 Thermophoretic losses (<5%), agglomeration (<15%)
- PN-PEMS vs PMP at TP have differences of ±30% (±20%)
- PN-PEMS vs PMP at CVS have differences of ±50% (±25%) (all vehicles, including mopeds)
- This difference is due to the sampling location + PN-PEMS uncertainty. It refers to small cycles of >10min.
- GMDs ranged from 20 to 75 nm
- PN-PEMS could efficiently remove volatiles (high dilution or catalytic stripper)
- Special attention has to be given to the robustness of systems (including PMP) for tailpipe measurements

Phase II – Conclusions

- 2 DC based and 1 CPC based (limited tests) systems exhibited very good behaviour. A third DC had very good behaviour as well (like Phase I)
- Uncertainty estimations were given
- Technical requirements
- Calibration procedures

Inter-Laboratory Correlation Exercise (ILCE)

- Objectives:
 - Familiarize labs with PN-PEMS, evaluate the robustness of PN-PEMS
 - Assess reproducibility and repeatability of the performance of the PN-PEMS (dyno)
 - Compare the RDE results on different roads at different locations
- Instrumentation
 - Golden vehicle (GDI, Euro 5b)
 - Gas-PEMS
 - PN-PEMS (CPC based)
 - PN-PEMS (DC based)
 - PMP for the tailpipe

Inter-Laboratory Correlation Exercise (ILCE)

- Experimental
 - Lab tests (cold NEDC, hot WLTC)
 - On-road tests according to the RDE procedures
- Planning
 - JRC (Beginning of September)
 - VW (Mid of September)
 - Bosmal (Beginning of October)
 - Honda (End of October)
 - Audi (Beginning of November)
 - Volvo (end of November)
 - TUV Nord (beginning of December)
 - JRC (End of December)

Inter-Laboratory Correlation Exercise (ILCE)

Example of (excellent) instruments agreement

Chassis and on-road tests comparisons

- Objective: Evaluate the emission of the same vehicle both in the laboratory and on-road
- Vehicles (Euro 5 and 6) tested both in the chassis dynamometer and on-road
- Reference cycle: WLTC
- On-road tests mixtures of urban, rural, motorway driving
- Ambient conditions typically 5-25°C
- Elevation 200-400m (few exceptions up to 1100m)
- PMP and PN-PEMS both on-board in some cases

Chassis and on-road tests comparisons

Lab results: Emission levels as expected

On-road and lab evaluation

Differences < 2

Parameters:

- -Accelerations
- -Temperature
- -Cold start
- -Extra weight

Summary

- RDE test procedure approved in May 2015 Annex IIIA to Regulation 962/2008 (1st package):
 - Performance requirements of PEMS
 - Test protocol, boundary conditions, U/R/M shares
 - Two alternative data evaluation to control for driving severity and enable a fair assessment of cars
- 2nd-4th packages will follow until 2018. To do:
 - Conformity factors
 - Complementary boundary conditions
 - Cold start
 - Data evaluation for Hybrid vehicles

2nd package: Completes gaseous RDE

- Dates and application of NTE (Not-To-Exceed) limits
 - NTE = EURO6 x CF x TF
- Conformity Factors (CF) (not yet approved)
 - NOx Step 1 (2017/8+1): 2.1 \rightarrow optimization with software existing Euro 6
 - NOx Step 2 (2019/20): 1.5 → Air Quality legislation (Development of hardware might be necessary)
- Transfer Function (TF)
 - Factor that depends on the probability of having specific road conditions
- Error analysis (measurement equipment, trip variations)
- Complementary Dynamic Boundary Conditions
 - Acceleration x speed
 - Relative positive acceleration
 - Positive elevation gain

3rd Package: Complete PN RDE

- PN-PEMS procedure and error analysis (Oct 2015)
- Use of PN-PEMS or Random Cycle (Nov 2015)
- Conformity Factors (CF) (Dec 2015)
 - PN Step 1 (2017/8) → Instrument measurement uncertainty + maturity
 - PN Step 2 (2019/20) → Best available technology (+instrument uncertainty)

3rd Package: Cold start (?)

4th Package: In-Service Compliance

- Administrative rules (March 2016)
- Technical rules (Oct 2016)

PN-PEMS for HD

- Call of interest
- Technical specifications definitions
 - Based on light-duty
- JRC evaluation (1/2 years)
 - N2, N3, (truck), M3 (bus)
 - Different conditions than LD (e.g. temperature, particle nature etc)
 - On-road tests
- Validation program
 - OEMs
 - Instruments in parallel

LD

- Call of interest (end 2012)
- Phase I (end 2013)
- Phase II (end 2014)

• ILCE (end 2015)

Thank you for your attention!

