

PEMS testing of light-duty vehicles: EC JRC developments

Presentation Outline

- Objectives of the EC LDV PEMS Test Program
- Design of the program
- Test protocol (PEMS Installation, Testing)
- Test routes
- Test results
- Performance evaluation with on-road data
- Perspectives for the future EU legislation

Objectives of the EC LDV PEMS Test Program

Customer: EC DG ENV

- To contribute to the establishment of a knowledge and data base on the nature and frequency of different driving situations of road vehicles encountered in real-world driving in the EU, the associated emission levels of pollutants and the associated fuel consumption
- To contribute to the development of criteria for the testing of motor vehicles other than HDV using PEMS

Design of the program - Phase 1

- To develop the general 'recommendations' to install the equipment and to collect the data on board of light-duty vehicles;
- To design test routes that encompass the basic set of conditions (city, rural, highway, slope, etc...) that may be encountered by the vehicles;
- To evaluate available data processing methods that can potentially be used to either analyze the on-road emissions data or to provide pass-fail information in a type-approval context.

Design of the program - Phase 2

- To test several vehicles of different technologies on the same reference routes (city, rural, highway, uphill);
- To study the test-to-test repeatability for a given vehicle-route combination, as each vehicle-route;
- To further evaluate the data processing method selected at the end of phase 1;
- To identify potential emissions 'problems' arising when vehicles with different vehicle technologies are driven under real-world conditions.

Test protocol - Phase 2

- To test several vehicles of different technologies on the same reference routes (city, rural, highway, uphill);
- To study the test-to-test repeatability for a given vehicle-route combination, as each vehicle-route combination was tested three times;
- To further evaluate the data processing method selected at the end of phase 1;
- To identify potential emissions 'problems' arising when vehicles with different vehicle technologies are driven under real-world conditions.

Testing: Test Parameters

PARAMETER	MEASUREMENT DEVICE			
THC Concentration	Analyzer			
CO Concentration	Analyzer			
CO2 Concentration	Analyzer			
NOx Concentration	Analyzer			
Exhaust Flow Rate	EFM			
Exhaust temperature	EFM Temperature Sensor			
Vehicle speed	GPS			
Vehicle position and altitude	GPS			
Acceleration	GPS			
Distance traveled	GPS			
Elevation	GPS			
Ambient humidity	Humidity Sensor			
Ambient temperature	Temperature Sensor			
Ambient pressure	Pressure sensor			

Peculiarities of PEMS LDV Testing

- Emissions measured from cold start, including cranking
- Use of standard commercial fuels
- Access to ECU data possible but difficult due to the lack of standardisation: issue for QC/AC of testing
- Weight and size of PEMS equipment acceptable but not negligible (70 to 100 kg = 1 person, all PEMS accessories included)
- Use of power generators impossible in most cases: the lifetime of the batteries restricts the test durations to roughly 3 hours

Test vehicles (as off December 2007)

	РНА	SE 1	PHASE 2			
	DIE	SEL	HYBRID	DIESEL	GASO	LINE
VEHICLE BRAND AND TYPE	Fiat Scudo JTD	VW T5 TDI	Toyota Prius	Renault Clio	Ford CMAX	Renault Clio
ENGINE CAPACITY [LITRE]	2.0	2.5	1.8	1.5	1.8	1.2
AFTER- TREATMENT SYSTEM	Oxidation catalyst only – No DPF	Oxidation catalyst only – No DPF		Oxidation catalyst only – No DPF		
EMISSIONS STANDARDS	EURO 3 Class II	EURO 4 Class II	EURO 4	EURO 4	EURO 3	EURO 4

Mileage range: 5000 - 80000 km

Test routes

	ROUTE 1			ROUTE 2			ROUTE 3		
Section	Rural	Mot.	TOTAL	Rural	City	TOTAL	Rural	Uphill	TOTAL
Distance [km]	35	100	135	51	10	61	50	10	60
Approx. ver. Speed [km/h]	50	90	65	40	25	35	45	30	40

Test routes: GPS Altitude Profiles

Test results - Complete trips - THC

Test results - Complete trips - CO

Test results - Complete trips - NOx

How to evaluate the on-road emissions data...?

- To characterize in-use emissions
- To consider most of if not all operating patterns
- To damp short effects (peaks) by determining suitable averaging durations
- To select averaging lengths that are representative for the engines

Data Evaluation: US Legislation

 Not-To-Exceed (US-NTE) Standards for On-Highway Trucks (Heavy-Duty) and Non-Road Mobile Machinery

Data evaluation: Future EU HDV Legislation

 Averaging window principle: moving average, using a reference value to define the size of the averaging window.

- Unlike US-NTE, all the data is accounted for.
- The reference quantity is obtained from the applicable certification test procedure.
- The reference quantity is currently work for HDV.
- The possibility to use a CO2 mass instead of work is being evaluated.

Data evaluation: Future EU HDV Legislation

Data Evaluation: Averaging window based on a reference CO2 mass

- Light-Duty Gasoline Vehicle
- Illustration of the averaging window method
- Reference CO2 mass from NEDC cycle

Data Evaluation: CO2 Averaging window NOx - EURO3 Gasoline

Data Evaluation: CO2 Averaging window NOx - EURO4 Gasoline-Hybrid

Data Evaluation: CO2 Averaging window NOx - EURO4 Diesel

Conclusions (1)

- A laboratory test cycle (NEDC or other) is unlikely to provide an efficient in-use emissions control, as it represents only a limited set of ambient and operating conditions.
- The current emissions laboratory test procedures are not fully appropriate for the future combinations (engine-after treatment-fuel-power train) technologies, as they may only 'capture' a small part of their real usage:
 - Hybrids
 - Multi-mapping of engines
 - Etc...

Conclusions (2)

 In-use testing with PEMS is one of the solutions to check engines and therefore to keep in-use emissions below a certain level under all normal ambient and geographic conditions"

Limitations

- For LDV, simultaneous testing of gaseous and PM emissions difficult with the current equipment size
- Comparison of emissions and fuel consumption from different vehicles possible but difficult.

Advantages

View on the real vehicle emissions...!

Perspectives for the future EU legislation

Thank you for your attention...

