This is an HTML version of an attachment to the Freedom of Information request 'Meeting between DG ENER and the Conseil de Cooperation Economique'.






         
 
Ref. Ares(2020)7906432 - 23/12/2020
     
 
 
CONSEIL DE COOPERATION ECONOMIQUE 
 
 
 
UNDER THE PERMANENT PATRONAGE OF THE FRENCH ITALIAN PORTUGUESE AND SPANISH GOVERNMENTS 
 
 
DISCUSSION PAPER1 
ENERGY SYSTEM INTEGRATION  
 
MAY 2020  
 
 
1. A truly integrated energy system to enable a climate neutral future 
 
The decarbonization scenarios, and the evolution in technologies and costs, bring opportunities and 
challenges that the EU will need to address in the context of the European Green Deal and in order to 
implement the Paris Agreement. Most importantly, a stable, transparent, market-based and neutral 
long-term framework for different technologies is needed to drive investments into clean energy 
solutions that support and accelerate the energy transition
. This will be especially important also in 
the context of the EU Recovery Plan and the post-COVID-19 recovery phase. 
 
To reach the EU’s ambitious climate & energy targets in 2030 and carbon-neutrality in 2050 at the 
lowest overall costs while ensuring security of supply
 of clean energy at an affordable cost for all 
consumers 
(households, industries, etc.), a new energy paradigm at the core of the EU’s energy policy 
is needed: Energy System Integration, bringing together, among other, electricity and gases across 
sectors, as well as Demand-Side Response, innovative and conventional storage solutions, etc. both 
within and beyond the energy sector: 
x  to boost energy efficiency 
x  to integrate renewable energies efficiently and effectively 
x  to support the development of the circular economy 
x  to pave the way for environmentally more sustainable agriculture, mobility and heating 
x  to sustain the development of a European industrial leadership in green technologies 
x  to develop a new energy paradigm able to be adopted world-wide  
 
1 This discussion paper has been drafted by the CCE based on the contributions of a panel of experts from large 
European companies in the energy system, including the electricity and gas sector, as well as selected end-
consumers. The document is structured around the key questions 
 ENER, requested 
the CCE High-Level Group (meeting on 11 February in Paris) to focus on: 1. A new “narrative” for the gas sector 
in the context of the energy transition; 2. Technologies and solutions; 3. Regulatory barriers and 
recommendation on how to overcome them. This paper aims to present a balanced and holistic perspective, 
focusing (particularly in chapter 2), in line with the request, on the efforts needed to accelerate the 
transformation of the gas sector. The content of this paper remains of the sole responsibility of the CCE. 
 
 
 


 
x  to optimize the use of existing energy infrastructures for the sake of cost-efficiency while 
avoiding stranded costs and assets. 
 
The final objective goes beyond the energy sector and implies the smart sector integration to drive 
cost-efficiency and carbon neutrality across the economy, 
where renewable and decarbonized 
energy, be it electrons or molecules (in gaseous or liquid form) will flow freely between sectors 
(industry, transport, agriculture, buildings, etc.) reducing GHG emissions, allowing for greater 
flexibility and contributing to a sustainable, circular economy. 
 
According to all scenarios, climate neutrality will be achieved to a large extend through renewable 
energy production, with a growing share of renewable electricity and electric consumption, where 
applicable, and with renewable and decarbonized gases2 (including hydrogen) and their uses at its 
core.  
Nevertheless,  while the EU should pursue to progressively reducing Europe’s fossil fuel 
dependency
, natural gas will continue having a relevant role for at least a decade until it is 
progressively replaced by renewable and decarbonised  gases.  During  this  period,  natural  gas  will 
continue replacing more polluting fuels and providing flexibility and security of supply to the EU at 
affordable and competitive prices. In the longer-term, natural gas may have a role in the energy mix 
provided its emissions are abated through CCUS or compensated through other means.  
 
Energy system integration should be based on a holistic, technology-neutral approach, that ensures 
that EU climate goals are achieved,
 for commercially mature technologies in which several tools, 
including energy efficiency, increased renewable electricity production, direct electrification where 
applicable, development and deployment of renewable and decarbonised gases, carbon capture and 
storage solutions, fuel to gas switch and hybridization of final demand, where appropriate, will be 
associated and the different solutions can compete among each other in order to optimise the overall 
system, as soon as they reach commercial maturity. The aim of the Energy System Integration is not 
to “promote” specific commercially mature technology options, but to “enable” all of them in order 
to let the market and the consumers choose, 
fostering the scale-up process of less mature 
technologies that are essential to achieve EU climate goals, like renewable hydrogen and energy 
storage solutionsAdditionally, this approach should ensure a level playing field and should secure 
that all sectors have the opportunity to contribute to the transition to a low carbon economy. Relying 
on energy efficiency and multiple energy carriers and innovative solutions, including renewable 
electricity as well as renewable and decarbonized gases, is therefore the most resilient and cost-
effective pathway to carbon-neutrality. 
 
Further, system integration, and the energy transition more widely, must be structured from the 
bottom-up through optimised energy systems of different sizes. From prosumers through to energy 
communities and commercial optimisations to integrated electricity/gas/heat distribution systems 
and decentralized renewable gas and fertilizers production, such energy systems enable easier 
 
2 The term “renewable and decarbonized gases” used in this text is not exhaustive and it does not refer only to 
renewable and 100% decarbonized gases. In the transition, a blend of natural gas and gases with different level 
of decarbonization may be also necessary, at least in the initial phase, to help to develop new markets and build 
up volumes. We do not propose here any concrete definitions or classification for the new gases, this will of 
course be essential. CCE takes note of the terminology proposal presented by the New Gases Network at the 
Madrid Forum in 2019 which could be a good starting point for discussion (link) 
 


 
management of the increasing complexity and encourage acceptance through direct customer 
participation. 
 
System Integration should equally contribute to sustain the EU’s three energy policy pillars – 
affordability, sustainability and security of supply 
– benefitting energy consumers and ensuring that 
system costs remain adequate. All these dimensions, including jobs and growth in the energy sector 
and the wider ecosystems of energy-using products and industries, are of particular importance since 
the EU is about to design a Recovery Plan, for Europe to emerge even more resilient and sustainable 
from the COVID-19 crisis.   
 
Energy System Integration therefore should  
o  Use both gas and electricity systems in the most efficient way, reducing the cost of the energy 
transition for the consumers by optimising and using the advantages of each system, while being 
in line with climate objectives 
o  Enable the large-scale deployment and integration of the growing amount of variable 
renewable electricity (mainly solar and wind) 
o  Enable the large-scale deployment and integration of other forms of renewable energy, in 
particular renewable gases and carbon negative solutions, as well as decarbonized gases 
o  Allow end-users to select the appropriate system-cost-efficient solutions that best suits their 
specific needs (electricity, gas, heat, or hybrid) 
o  Exploit intermediate energy carriers when available and/or when renewable production cannot 
directly answer demand characteristics (e.g. high-temperature industrial processes using 
hydrogen of synthetic methane produced from renewable electricity) 
o  Enable the creation of new links between energy carriers and the respective 
transport/transmission and distribution infrastructure, as (renewable) electricity can be used in 
electrolysers (e.g. Power-to-Gas) to produce hydrogen (electrolysis) and synthetic methane 
(methanation), which will contribute to decarbonise end-uses and can also be stored on a large 
scale and over longer periods, allowing seasonal energy flexibility/storage. Similarly, biogas 
production (which cannot be consumed locally) can be converted into electricity (G2P) and 
injected into the electricity network for immediate consumption elsewhere or stored in e.g. 
batteries or hydro pumped storage. 
o  Ensure an appropriate regulatory framework for the use and the value-exploitation of existing 
gas assets as well as any other assets that can support system integration.  
ƒ  This includes the use of T&D gas assets and infrastructures to blend hydrogen and 
synthetic methane with natural gas, converting it where appropriate to the transport of 
pure hydrogen and facilitating the production of biomethane and its injection into the 
gas grids. Blending allows for building up hydrogen volumes in a cost-effective manner 
until reaching certain concentration levels in the gas grid, moving towards hydrogen-
dedicated pipelines.  
ƒ  The framework for electricity should allow electricity assets and infrastructures to be 
valued and used in this context, namely the role of dedicated RES to renewable hydrogen 
production.   
o  Ensure that gas systems, including natural gas and gas blends with renewable, decarbonised and 
low-carbon gases, remain interoperable, avoiding market fragmentation and ensuring a fully 
integrated European gas market.
 
 


 
o  Make sure that the allocation of the costs not related to the energy production and supply (e.g. 
costs due to social policies) does not distort the level playing field between the different energy 
carriers
 and avoiding any cross-subsidization. 
o  Similarly,  all energy carriers or end-uses should bear the corresponding cost of their GHG 
emissions, based on a life-cycle approach in order not to distort the level-playing field between 
different energy carriers. For carbon leakage sectors, alternative solutions should of course be 
considered, such as the Carbon Border Tax / Adjustment announced in the European Green Deal. 
 
Under a new European framework for energy system integration, gas and electricity will continue to 
compete in a way that benefits the economy, consumers in line with the EU’s climate objectives.  
However, they will also need to better cooperate and complement each other. For this to happen, 
several building blocks are needed to ensure a secure, resilient and cost-efficient decarbonisation 
process of the energy system: R&D&I, including demonstration projects and support to commercial 
deployment, a coordinated operation and infrastructure planning, and a clear commitment sustaining 
the development of renewable and decarbonised gases to create a level playing field for all 
technologies and solutions, as well as a sound and coherent regulatory framework in line with the 
EU’s climate objectives will be needed. 
 
 
2. Technologies and solutions  
 
Available and mature technologies today
 to enable immediately energy system integration, are, for 
example, CCGTs and both natural gas and LNG storage, as well as hydro pumped storage or DSR from 
industrial consumers
.  
Gas-fired combined cycle power plants have been the first link between the gas and the electricity 
sectors, providing substantial amounts of energy to the system. By replacing coal fire power plants, 
CCGT will allow for short-term CO2 reductions while ensuring the system adequacy. In addition, CCGT 
also provides the necessary flexibility to cope with the increased intermittency that further 
renewables penetration is causing. CCGTs can remain an important part of the energy system in the 
long-term, thanks to their capability of being fuelled with renewable and decarbonized gas, or being 
abated with carbon-negative solutions including CCUS, next to energy storage solutions and flexible 
production of P2G products such as renewable hydrogen or synthetic methane. 
Gas storage and LNG storage are also an important example of already existing infrastructures that 
can bring immediate flexibility to the electricity sector
 and, at the same time, avoiding unnecessary 
investments in electricity networks, specially to cope with peak energy demand on one hand and 
renewables intermittency on the other. 
These existing mature technologies face major challenges to ensure their economic viability 
notwithstanding their contribution to the energy transition. For instance, CCGTs will contribute to the 
integration of intermittent renewables and should be used among others as backup for renewables in 
the mid- to long-term. However, the recently revised electricity market design does not provide the 
long-term visibility needed to trigger investments in flexibility and back-up nor the level of operational 
margins to allow the recovery of fixed and investment costs for assets providing these services. Thus, 
and in order to guarantee their important role in the context of the energy transition, an adapted 
market design should be put in place encompassing CRM (open to flexible generation, storage and 
DSR) in order to ensure the right economics. This will ensure that such solutions remain operational 

 


 
or are added to the system according to its needs, can use renewable and decarbonized gases and 
contribute to the success of the energy transition.
 The same applies to existing gas storage 
infrastructures. 
The adequate remuneration of flexibility and of key assets/solutions for a fully integrated system 
will need to be ensured, including adequate tariff design and future-proof regulatory framework for 
different energy sectors. This is one of the main “lessons learned” so far that needs to be considered 
if the EU wants to succeed in the energy system integration. 
Biomethane production through anaerobic digestion is a relatively mature technology in some 
Member States, including Denmark, France or Italy (in France, for example, there are currently 139 
biomethane plants injecting on the grid including 15 on the transmission grid, to be compared to 76 
plants end of 2018; biomethane projects awaiting to be connected represent more than 20 TWh). 
Biomethane is actively contributing to sector integration, by creating virtuous synergies between the 
energy and agriculture sector. In France, for example, biomethane is produced respecting 
sustainability rules, and is essentially produced from wastes. Additionally, biomethane production can 
bring numerous positive externalities and also contribute to the circular economy: it supports the 
deployment of bio agriculture, produces a substitute to chemical fertilizers, creates local jobs and 
enhance Europe’s energy independence. Biomethane can be used as substitute of natural gas in all its 
uses and can be easily injected into the gas grid. 
Biomethane is also a key technology to decarbonise the transport sector. For instance, in the case 
of long-haul trucks, railway and maritime transport, these sectors are indeed facing specific 
challenges: they need a high-volume density fuel, they currently rely on gasoil or on heavy fuel oil, 
and for the time being, the only available alternative fuel is LNG. The shift from heavy fuel oil to LNG 
is a first step in terms of substantial CO2 reductions (and air quality improvement) that should be 
kickstarted and supported now in order to avoid continued investments in unabated fuel oil for years 
to come. This is all the more important as an LNG fuelled fleet is future-proof: with dual fuel engine 
and vast cryogenic tanks, shifting now to LNG will also help to accommodate the vast majority of 
renewable and decarbonized fuels. In particular, Liquefied Biomethane (LBM) and Liquefied Synthetic 
Methane (LSM) can be immediately deployed without modification thanks to the existing LNG 
infrastructure. In a medium- and long-term horizon, blue and green hydrogen, respectively, or other 
hydrogen-based energy carriers could complement biomethane. 
The biomethane competitiveness is gradually increasing, but the missing valorisation of positive 
externalities related to its production, such as the positive impact in particular also on rural areas, is 
hampering its large-scale development potential in the short term.3  
A flagship solution is the production of  renewable or green hydrogen using either renewable 
electricity from the power grid or from dedicated renewable assets, which is considered the most 
advanced and available Power-to-Gas technology. Green hydrogen is also considered the most viable 
solution to ensure the decarbonisation of different sectors like heavy-duty transport, maritime 
transport as well as for greening the hydrogen produced in the industrial sector, for example.  
Hydrogen-based solutions, including fuel cells, should be further explored to decarbonize mobility.  
Alongside, the electrification of light-duty vehicles (but not only) should also continue to be pursued 
through electric batteries.  
 
3 For LSM, progresses are expected on the methanation part, and availability of new sources could also greatly 
improve the competitiveness of the solution. For instance, reusing the CO2 generated during the processing of 
the biogas into biomethane could be an extremely virtuous option.   
 


 
The existing gas infrastructure has an important role to play with regards to hydrogen, as it offers 
several options
 that may co-exist, depending on time and location: the blending of hydrogen in the 
gas network up to a given share, the actual repurposing of parts of the gas network to pure hydrogen, 
and the methanation of hydrogen prior to its injection in the gas grid.4 Blending responds to different 
interests
: it allows to kick-start the decarbonation of users connected to the gas grid; it supports the 
integration of renewable electricity in cases where it faces a congestion on the electricity grid (power-
to-gas); it also contributes to the development of the hydrogen market by offering to hydrogen 
producers an option to produce hydrogen in a way that is de-correlated from any specific and local 
use, as the producers will be able to inject into the gas grid whatever production is beyond this specific 
and local use. Converting parts of the gas grid to pure hydrogen is also an economically viable option 
to connect hydrogen producers and users.  
Other renewable and decarbonized gases exist and are in early phases of development, requiring 
industrial scale demonstrators such as: thermal gasification of wastes (which produces both hydrogen 
and synthetic methane), methanation of hydrogen to synthetic methane, etc. Support schemes may 
be necessary to help them develop and reach utility scale and maturity.  
In addition to gaseous fuels and infrastructures that provide cost efficiently large volumes of 
flexibility, it is important to consider that there are other flexibility options
, such stationary 
batteries, hydro pumped storage, demand side response  (including from EVs), interconnections or 
other innovative technologies, such as CAES, LAES or PHES. Similar to the case of renewable and 
decarbonized gases, some of these technologies are still in early phases of development or are 
subject to well-known market failures
, so apart from the creation of the correct market signals for 
both short and long-term flexibility, support schemes may also be necessary to help these 
technologies to develop. 
Regarding the heating sector (a key energy usage case), gas and electricity provide both highly 
efficient solutions for heating with high performance condensing boilers and heat pumps, which are 
well known. The technologies used amongst EU Member States varies considerably due to historical 
reasons, climate and infrastructure availability, which means that the transition to a decarbonized 
heating sector will heavily depend on the starting point of each Member State. In areas that have a 
widespread gas network available (including district heating facilities), the repurpose of that 
infrastructure to accommodate renewable and decarbonized gases or the use of centralized heat 
pumps would allow a more predictable and cost-effective transition for the end-consumer. In other 
cases, in regions with higher average temperatures the combination of a scattered network and lower 
utilisation levels will likely mean that electrification or hybrid heating solutions are more cost 
competitive and that the role the existing gas infrastructure will change, focusing more on high heat 
demand consumers, peak heat needs, for which it will also be necessary to provide renewable and 
decarbonized gases. 
In this context, hybrid heat pumps are a solution to combine maximal efficiency during all the year 
and especially during the winter while at peak they rely on flexible gas networks, thus bringing major 
flexibility to the power grid. Hybrid heat pumps can probably be a massive system integration tool for 
demand response in terms of capacity (GW). One of the reasons why hybrid heat pumps have not yet 
been largely deployed is instructive on the difficulties of System Integration: as hybrid heat pumps are 
using both electricity and gas, none of the two sectors have been too keen to promote them, each 
 
4 A number of TSOs are working on this topic (in France for example the network operators published a joint 
report on the technical and economic conditions for injection of hydrogen in the gas grid). Regarding blending, 
gas operators (in France in particular) have received several requests of hydrogen producers willing to inject.  
 


 
sector focusing on its own technology (gas boiler vs. heat pump). In some cases, end-users lack 
appropriate signals that incentivize them to choose the less costly solution for the system.5  
Energy labelling and building regulations have a decisive impact on the choice of the heating 
appliances. By choosing primary energy factor and CO2 content that may not reflect correctly whole 
system costs for a given usage of different energies, they can mask the interest of the most effective 
solution for the final customer, or for the real estate developer, that is often the real prescriber. 
 
3. Recommendations for a policy framework for energy system integration 
 
The main barriers to the development of new solutions for system integration are their current cost-
competitiveness (commercial maturity not yet reached)
, the lack of a clear commitment in favour 
of the large-scale development of renewable and decarbonized gases, the lack of level playing field 
between energy carriers and the missing valorisation of positive externalities. These factors 
negatively impact 
the availability of funds to finance R&D, pilot projects and evolution to large scale 
solutions as well as support schemes. 
Moreover,  the development of new solutions is hindered by the absence of a clear regulatory 
framework and incentives to support and remunerate system integration
. This could include, for 
example, rules allowing grid operators to handle different gases (methane, hydrogen, CO2) and 
incentives to the gas and electricity  grid operators in order to adapt their infrastructures for the smart 
integration of renewable energy and to cope with the coexistence of different gases and also 
incentives to developers/promoters of said initiatives and reform of State Aid guidelines. 
Thus, an EU framework to support energy sector integration, establishing a common set of rules for 
all Member States, is needed
. This is of particular importance since the EU has to urgently design and 
implement a Recovery Plan post COVID-19 crisis. The plan should be open to a plurality of technologies 
and solutions, making sure that the most efficient and affordable solutions are adopted, focusing on: 
x  European future-proof technologies that contributes to decarbonization and is quickly 
deployable on the market 
x  European research and stimulus for not yet mature technologies  
In addition, those efforts would allow the EU to become a global leader on industrial and technology  
strategic value chains
.  
We recommend the Commission to consider the following elements as essential building blocks to 
establish a clear and stable regulatory framework that promotes the necessary investments, needed 
to ensure the energy system integration to accelerate the transition:  
x  As a prerequisite, make sure that the allocation of the costs not related to the energy production 
and supply (e.g. costs due to social policies) does not distort the level playing field between the 
different energy carriers
 and avoiding any cross-subsidization, as well as  an appropriate 
 
5 Hybrid heat pump development allows to reduce electricity system costs, including transport and distribution 
costs, by decreasing the power demand during cold snaps in winters, which are the dimensioning events for the 
electricity networks. If end-users electricity grid tariffs are not adapted, consuming a lot of power during these 
relatively short periods may not represent a significant cost for the end-user, at least for network tariffs: keeping 
a low efficiency but low-cost auxiliary electric heater for these extreme periods could be the economic optimum 
for the end-user. 
 


 
internalization of externalities (through robust and sustained CO2 price signals across sectors, 
including non-ETS sectors, through properly allocating cost and benefits, etc.).  
x  Promote all efficient renewable energy carriers, basing future CO2 emission standards also on 
a life cycle assessment methodology, for example in the transport sector not on “tail-pipe 
emissions.”  Similarly, all energy carriers or end-uses should bear the corresponding cost of their 
GHG emissions
, based on a life-cycle approach in order not to distort the level-playing field 
between different energy carriers. 
x  Revise the gas and electricity tariffs to ensure that there is no duplication of costs, that existing 
and future flexibility costs are visible and properly reflected in the final prices to allow an economic 
case for flexibility solutions like hybrid heating and that energy system integration is not penalized 
and turned inefficient; a level playing field for different facilities across the energy system
regarding market access, network tariffs, etc. is needed; in particular tariffs and market rules 
should be reviewed to avoid undue obstacles to the development of Power-to-Gas, for example. 
x  The  renovation wave promised in the European Green Deal should be used to promote the 
replacement of old and inefficient boilers with highly-efficient systems, such as  (hybrid) heat 
pumps and condensing gas boilers that will increasingly be operated using renewable and 
decarbonized gases. It should also promote connection to district heating and cooling networks 
where available as well as their modernization. 
x  Revise energy taxation to ensure that there is no duplication of taxes on energy stored/converted 
and that energy system integration is not penalized and turned inefficient; a level playing field for 
different facilities across the energy sector 
is needed to avoid undue obstacles to the 
development of Power-to-Gas. Energy Taxation shall not originate any cross-subsidies between 
energy carriers, should increase the transparency in the benefit of final customers, and favour 
energy efficiency and economically-sustainable decarbonisation.  
x  Commit to a strategic vision regarding gaseous energy carriers and sustainable use of gas 
infrastructure. This vision should encompass both the role of natural gas as a cost-effective 
decarbonization option available in the short to medium term (replacing more carbon-intensive 
and polluting fuels such as coal and oil that are being phased-out), and the increasing use over 
time of renewable and decarbonized gases (including bio- and e-methane as well as hydrogen) 
and the role of the existing gas infrastructure in integrating, transporting and storing renewable 
and decarbonized gases, coexisting also in some regions, where feasible, with the use of abated 
natural gas via CCUS technologies.  While energy independence should primarily be fostered and 
local production maximized, the Commission could also consider a common approach to imports 
from partners and neighbouring countries of such gases
, in particular for green hydrogen.  
x  Consider the most effective options for setting targets for the development of renewable 
energy, including renewable electricity and renewable and decarbonized gases and support 
schemes 
to develop and deploy these gases, at the least costs for consumers and the system, 
considering “lessons learned” from targets and support schemes to develop and deploy 
renewable electricity in the past. This should lead to set up the right incentives for 
developers/promoters of renewable energy including gas infrastructure operators. 
x  Ensuring remuneration of firm capacity, flexibility and other services to the system – CCGTs for 
instance, will need an appropriate market design encompassing CRM (open to generation, 
 


 
storage and DSR) able to ensure their economic viability and allowing them to contribute to the 
integration of intermittent renewables (flexibility and backup) in the short term and before other 
viable solutions to provide flexibility and other services to the system become fully available.  
Moreover, provisions in the Clean Energy Package to create (local) markets for congestion 
management should be swiftly implemented, ensuring that system operators properly indicate 
their flexibility needs and that market players are able to devise the right products to answer those 
needs. 
x  Promote the development of a robust and coordinated investment process between the gas 
and electricity network operators, possibly including a coordinated or  joint TYNDP, with fully 
transparent and open stakeholder participation, 
in particular on peak power demand, 
geographical location of power generation and efficiency for different uses. This process should 
identify in the assessment the investments required to transport and store energy across the EU 
energy system in the most efficient way, including energy transition projects, optimising 
investments in both sectors, and aiming for the lowest societal cost. The distribution level shall 
also be better integrated into the assessment and modelling, and TEN-E categories should be 
extended in order to ensure that efficient projects supporting the integration of renewable and 
decarbonised gases, hydrogen infrastructure (in particular resulting from the conversion of the 
gas infrastructure) and CO2 transportation projects are covered (PCIs). Moreover, the regulatory 
framework for operators that invest in retrofitting their networks for increased hydrogen content 
should recognize the respective costs. 
x  Ensuring the right to be connected for installations for new gases (e.g. P2G) to the gas network 
on an easy and agile manner, ensuring that these installations’ capacities are open to third parties 
(TPA) and operating under a well-designed Guarantees of Origin (GOs) scheme. 
x  Ensure coordination in terms of operational rules between distribution and transmission system 
operators.  High level principles should be established at the DSO level with increasing 
development of renewable and decarbonized gases being injected and moving between the two 
network systems (from TSOs to DSOs and from DSOs to TSOs). This could indeed be a subject 
matter for an autonomous gas DSO entity (as requested by the Clean Energy Package for electricity 
DSOs, “E-DSO”) that works in conjunction with ENTSO-G, ENTSO-E and E-DSO, on an equal footing 
and with high transparency.  
x  Ensure that the conditions for the provision of flexibility are sufficiently harmonized on a European 
level through a dedicated Network Code on Demand Response, Storage and Aggregation. This 
will enable considerable cost savings, while also allowing room for manoeuvre to adapt to the 
specificities of different Member States. 
x  Support a clear definition and classification for the various types of renewable, decarbonized 
and low-carbon gases to promote the development of sustainable solutions, support investment 
decision-making and ensure transparency for all consumers. 
x  Ensure an appropriate financial “taxonomy” framework, based on their specific environmental 
footprint, for different energy carriers and infrastructures, where no technology is chosen 
upfront and where the transitional dimension is considered. In absence of that, and the current 
orientations seem to open to that risk, the status quo may prevail in some sectors and the overall 
energy transition costs will increase. 
 


 
x  Free market players shall develop the installations and capacity needed,  in line with the 
applicable regulatory framework  (unbundling); free market players should be the ones pushing 
these projects forward with proper incentives already at the R&D phase. If the market fails to 
deliver, regulated gas network operators should be allowed in a transitory period (until market 
interest comes back)  to engage in decarbonisation activities 
aimed at increasing the potential 
and actual quantities of renewable, decarbonised and low-carbon gases, developing, operating 
and owning innovative technology facilities and supporting their scaling-up, in a way that does not 
distort competition and secures third party access to maximise societal benefits.  
x  Amend the relevant EU legislation to enable network operators to operate several categories of 
gases, including CO2, providing incentives to the grid/network operators in order to adapt their 
infrastructures to cope with the coexistence of different gases and also incentives to 
developers/promoters of renewable and decarbonized gases. While injection of biomethane in 
the grid requires relatively minor - but necessary - adjustments and has no consequence for the 
users, three injection routes by 2050 have been identified for hydrogen: blending, methanation 
and 100% hydrogen clusters. The Commission should propose to set a specification of blended 
hydrogen as a sector-wide target by 2030 and after. The aim is to mobilise equipment 
manufacturers and downstream users, and to manage operators investments on a case-by case 
basis. 
x  Promote the circular economy principle through the use of gases from the agricultural sector
the reform of the Common Agricultural Policy (CAP) should recognise the role of sequential 
cropping as a sustainable agricultural practice which is subject to support, ensuring no double 
counting in the support schemes. Such a system would directly reward farmers for the tonnes of 
CO2 removed by growing inputs used for the production of biomethane, in addition to food crops.   
x  Furthermore, the EU’s LNG strategy should be revised to consider the role of liquefied 
biomethane (LBM) and liquefied synthetic methane (LSM) as well as, hydrogen-based energy 
carriers, to use existing LNG regasification terminals as entry door to energy imports
. LNG can 
help to further decarbonise the transport sector with the use of LBM and LSM that offer almost 
100% GHG emissions reduction and contribute to achieving net-zero emissions.  
x  Last but not least, foster demand participation into the balancing services and markets, avoiding 
disproportionate technical requirements by TSOs which mean, in fact, a barrier to the demand 
and also foster demand side participation through the access to the consumer data by services 
providers. 
 
*** 
 
10