

Future EU vehicle emissions regulations:

- Principles and requirements for real-world emissions -
- Status of on-going activities committees -

SUN Conference September 2012, Ann Arbor, USA

Pierre Bonnel, Adolfo Perujo, Martin Weiss European Commission DG - Joint Research Centre (JRC) IET - Institute for Energy and Transport

Outline

- Background
- Expectations of the legislators
- Existing regulatory elements
- Underlying principles for implementing real-world requirements
- Critical issues
- On-going efforts

Background

- EU Air Quality Directives
 - Persisting NO₂ exceedances in urban areas despite more stringent emissions standards
 - Main contributor is road transport, significant deviations between actual and expected NO_x emissions
- Strategy for climate and GHG emissions
- Long term vision for transport in Europe 2011
 Transport White Paper:
 - 60% CO₂ reduction over the 1990 levels by 2050
 - Halve the use of 'conventionally fuelled' cars in urban transport by 2030; phase them out in cities by 2050

Expectations of the legislators

 To have clean vehicles on the road and not only in the test cell

 To improve the ability to measure and quantify the real life emissions

- To push for an optimized design of emissions control technologies within the normal operating conditions
- To introduce cost-efficient¹ regulatory tools, able to cope with the upcoming technologies and limiting the use of defeat devices/strategies

Existing regulatory elements

 EURO VI 582/2011 & 64/2012: In-Service Conformity and type approval for heavy-duty engines, based on real-world vehicle testing with portable measuring equipment (PEMS)

- Verifies conformity of heavy-duty engines on vehicles during normal driving – at type approval and during their normal life ("In-Service")
- Does not explicitly include to 'real-world' emissions requirements but provides a functional and performance check of the emissions control technologies

Underlying principles (1)

- Range of applicable normal vehicle operating conditions
 - Ambient temperature, atmospheric pressure
 - Vehicle/engine condition (cold/hot) and usage (e.g. speed, acceleration, engine power)

Testing

 Under real on-road driving conditions with Portable Emissions Measurement Systems (PEMS) as 'golden' method

Underlying principles (2)

- Data evaluation rules¹
 - Suitable averaging principles and statistics need to be developed due to variability of conditions within a test and longer test durations than for the conventional laboratory tests.
- Not To Exceed principle
 - Vehicle/engine need to comply within the range of predefined operating conditions
- Decisions made from sound statistical methods and samples of vehicles/engines

Critical issues

- Portable instrumentation for light-duty vehicles
 - Power consumption, size and weight acceptable for heavy-duty vehicles
 - Equipment needs to be smaller for light-duty vehicles
- Definition of boundary conditions in which the realworld requirements must be fulfilled
- Engine/vehicle development processes will become more challenging¹

On-going efforts (HDE)

Heavy-Duty Engines

In-Service Conformity:

 Review of Euro VI PEMS In-Service Conformity procedures (practicability, implementation) by the end of 2014

- PEMS PM Instrumentation evaluation exercise completed: instrumentation requirements proposed
- PEMS PM Pilot Program (Industry run program)

Real Driving Emissions:

 Assessment of existing requirements to check whether they ensure that EURO VI + engines are sufficiently clean. Attention paid to urban and low load operation.

On-going efforts (HDE PEMS PM)

- PEMS PM Instrumentation evaluation program
 - Total PM + Real-time sensor whose integrated signal is scaled by the total mass
 - Requirements proposed for gravimetric and real-time PM measurements
 - Instrumentation for gravimetric measurements
 (e.g. proportional dilution, sampling, filters) mostly aligned with
 existing laboratory standards
 - Real-time sensors key measurement performance is a particle penetration rate at a given particle size (e.g. limiting the influence of ultra-fine particles

On-going efforts (LDV)

Light-Duty Vehicles

Real Driving Emissions (RDE):

- Development of procedures (PEMS and laboratory random cycle) by the end of 2013.
- Joint effort EU authorities and industry
- Implementation for Euro 6 vehicles, calendar and implementation measures (e.g. sampling of vehicles, administrative aspects) not officially agreed.

On-going efforts (NRMM)

Non-Road Mobile Machinery Engines

In-Service Conformity:

- Pilot Program (Industry run program) to be completed by the end of 2012
- Implementation for Stage IV or V standards (under discussion)
- Contributions from major EU and US engine manufacturers
- Adaptation of heavy-duty procedures to NRMM
- Equivalence with US methods being assessed

- Many thanks for your attention !!!
- For further information, please contact:
- Pierre Bonnel EC JRC <u>pierre.bonnel@jrc.ec.europa.eu</u>
- Adolfo Perujo EC JRC <u>- adolfo.perujo@jrc.ec.europa.eu</u>