Esta es la versión HTML de un fichero adjunto a una solicitud de acceso a la información 'New GM techniques (also called new breeding techniques)'.




Ref. Ares(2016)1831941 - 18/04/2016
Ref. Ares(2016)2053620 - 29/04/2016
 policy briefing  
 
 
 
 
30 November 2015
 
 
 
Gene-editing of plants – GM through the back door? 
 
Gene-editing techniques may be more precise than ‘traditional’ genetic engineering in 
their positioning of the intended alteration to genetic material. However, the newly 
created organisms can still display unexpected and unpredictable effects, which can 
have implications for their food, feed or environmental safety. If these new techniques 
were to be exempted from the EU’s regulations for genetically modified organisms 
(GMOs), there would be no requirement to detect and assess such unintended changes 
or to assess any potential negative safety effects. Also, there would be no requirement to 
make the products traceable and label them as GMOs. The GMO regulations in the EU 
must be interpreted in their intended sense, to encompass all modern biotechnological 
processes that directly modify genomes. Otherwise, the EU would be failing its citizens. 
 
What is ‘gene-editing’?  
 
Gene-editing (or ‘genome-editing’) techniques allow the direct modification of plant genetic 
material (usually DNA) at specific locations in the genome. They generally use nucleases, often 
called ‘molecular scissors’, which cleave DNA at specific sites and trigger the plant’s own repair 
mechanisms. Techniques involving this molecular scissors include zinc finger nucleases (ZFNs), 
transcription activator-like effector nucleases (TALENs), meganucleases (MN) and the clustered 
regularly interspaced short palindromic repeat (CRISPR/Cas) system. In contrast, oligonucleotide-
directed mutagenesis (ODM) is a gene-editing technique that does not use molecular scissors. 
With ODM, short DNA (or DNA-RNA) fragments (oligonucleotides) are introduced into cells where 
they trigger the cell to modify its own DNA to match the introduced DNA fragments.  
 
All gene-editing techniques (including ODM) can change, insert or delete one or a few base pairs of 
DNA1. Some applications of these techniques can also insert novel genes into the plant genetic 
code, similarly to ‘traditional’ genetic engineering.  
 
Unexpected and unpredictable effects  
 
Just as ‘traditional’ genetic engineering, gene-editing techniques can induce unintended changes 
in genetic material even if only one or a few base pairs have been altered2. For example, ODM and 
‘molecular scissors’ generally give rise to so-called ‘off-target effects’ meaning they cut and/alter 
DNA in places additional to those intended3.  
 
Both intended and unintended changes can be important in terms of plant protein production and 
metabolism. Thus, it is possible – and indeed likely – that ODM and other gene-editing techniques 
can give rise to unexpected and unpredictable effects with implications for food, feed and 
environmental safety4. 
 
 

 

Different from conventional plant breeding by mutagenesis  
 
It has been suggested that ODM and other gene-editing techniques could be exempt from the EU 
GMO regulations5. One argument given is that the genetic changes would be small when 
compared to ‘traditional’ genetic engineering, too small to be classified as recombinant6. However, 
the extent of change to the plant’s DNA is irrelevant in determining whether the resulting plant is 
classified as a GMO under the EU regulations. It does not matter whether only one or two DNA 
bases have been inserted, changed, deleted or whole novel gene sequences inserted. The DNA 
remains recombinant in that it has undergone recombination with the plant’s DNA. Moreover, the 
critical question is whether plant genetic material has been directly modified in a way that does not 
occur naturally. The answer to this is yes. 
 
It has also been argued that gene-editing results in similar changes to the plant genome as 
mutagenesis7. Traditional mutagenesis uses chemicals or radiation to induce random mutations in 
the plant genome. The plants displaying desired characteristics are then selected for further 
breeding. Plants developed by this technique are considered as GMOs but exempt from EU 
regulations.  
 
However, ODM and other gene-editing techniques are wholly different from mutagenesis. They are 
in vitro modern biotechnological techniques. This means that the genetic modification is enacted 
by heritable material (or material causing a heritable change) that has, for at least part of the 
procedure, been handled outside the organism by people8. In both the EU and Cartagena 
Protocol, the definitions of a GMO refer to (but not exclusively) the use of such in vitro techniques.  
 
Need for risk assessment, detectability and labelling  
 
In addition to the assessment of any novel characteristics of GMOs (e.g. herbicide tolerance), EU 
regulations require the assessment of any unintended changes and their implications for the safety 
of the environment, human and animal health. This is essential to achieving the health and 
environmental protection goals of the EU regulations. These regulations also require that GMO 
seeds, crops and food/feed products must be detectable and labelled. This allows farmers, 
consumers and governments to choose whether or not to use the products of genetic 
modification.  
 
Exemption of plants produced by gene-editing techniques from the EU GMO regulations would 
mean that there is no requirement to assess any potential effects on food, feed or environmental 
safety. It would also mean exemption from GMO labelling requirements, restricting the choices 
available to the clear majority of European consumers that wish to avoid food derived from GMO 
plants.  
 
The GMO regulations in the EU should be interpreted in their intended sense, to encompass all 
modern biotechnological processes that directly modify genomes. Otherwise, the EU would be 
failing its citizens.  
 
 

 

 
Contact: 
Franziska Achterberg – Greenpeace EU food policy director: mobile +32 (0)498 362403, 
xxxxxxxxx.xxxxxxxxxx@xxxxxxxxxx.xxx 
 
For breaking news and comment on EU affairs: www.twitter.com/GreenpeaceEU 
Greenpeace is an independent global campaigning organisation that acts to change attitudes and 
behaviour, to protect and conserve the environment and to promote peace. Greenpeace does not 
accept donations from governments, the EU, businesses or political parties. 
 
 
                                                         
1 Lusser, M., Parisi, C., Plan, D. & Rodríguez-Cerezo, E. 2012. Deployment of new biotechnologies in plant 
breeding. Nature Biotechnology 30: 231-239. 
2 Eckerstorfer, M., Miklau, M. & Gaugitsch, H. 2014. New plant breeding techniques and risks associated 
with their application. Environment Agency Austria 
http://www.umweltbundesamt.at/aktuel /publikationen/publikationssuche/publikationsdetail/?pub_id=2054; 
Agapito-Tenfen, S.Z. & Wikmark, O.-G. 2015. Current status of emerging technologies for plant breeding: 
Biosafety and knowledge gaps of site directed nucleases and oligonucleotide-directed mutagenesis. GenØk 
Biosafety Report 02/15, 43p. http://genok.com/arkiv/4288/ 
3 Lusser, M., Parisi, C., Plan, D. & Rodríguez-Cerezo, E. 2011. New plant breeding techniques. State-of-the-
art and prospects for commercial development. EUR 24760. 
http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=4100 
Araki, M., Mojima, K & Ishii, T. 2014. Caution required for handling genome editing technology. Trends in 
Biotechnology 32: 234-237. 
4 Pattanayak, V., Ramirez, C.L., Joung, J.K. & Liu, D.R. 2011. Revealing off-target cleavage specificities of 
zinc-finger nucleases by in vitro selection. Nature Methods 8: 765-770. 
5 Breyer, D., Herman, P., Brandenburger, A., Gheysen, G., Remaut, E., Soumillion, P., Van Doorsselaere, J., 
Custers, R., Pauwels, K., Sneyers, M. and Reheul, D. 2009. Genetic modification through oligonucleotide-
mediated mutagenesis. A GMO regulatory challenge? Environmental Biosafety Research 8: 57-64. 
6 Sauer et al. 2015. Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnology 
Journal doi: 10.1111/pbi.12496 
7 Hartung, F. & Schiemann, J. 2014. Precise plant breeding using new genome editing techniques: 
opportunities, safety and regulation in the EU. The Plant Journal 78: 742–752; Lusser, M. & Davies, H. V. 
2013. Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnology 
30: 437-446. 
8 Cotter et al. (2015) Application of the EU and Cartagena definitions of a GMO to the classification of plants 
developed by cisgenesis and gene-editing techniques. Greenpeace Research Laboratories Technical Report 
(Review) 07-2015 18 pp. http://www.greenpeace.to/greenpeace/wp-content/uploads/2015/11/Application-
of-GMO-definitions-to-plants-developed-by-cisgenesis-and-gene-editing-techniques.pdf