

EU Taxonomy

EnBW Siemens Energy

Key Challenges

100gCO2/kWh even for transitional activities

262gCO2/kWh as "doing significant harm"

Technology Readiness Our mission: 100% hydrogen

Siemens gas turbines H₂ capacities

Source: Siemens

■ DLE burner ■ WLE burner ■ Diffusion burner (with unabated NO_x emissions)

^{*} MW, ISO, base load, natural gas version 2.0, March 2019

Example - Industrial GTs: 250gCO2/kWh require 50 vol % hydrogen co-firing

SGT-800 Single Cycle (62MW(e)) 75 vol-% H₂ halves the carbon footprint

SGT-800 Combined Cycle 75 vol-% H₂ halves the carbon footprint

99.8%

fuel can contain up to **50%** hydrogen (by volume),

 H_2 with DLE burner

Ramp-up scenarios for carbon-neutral gases leading to zero emissions in 2050

Average emissions on average over the asset lifetime based on the conservative ramp-up scenario

Results for an optimistic and a conservative gas mix scenario (CO₂e/kWh share per decade) – blue hydrogen sensitivity analysis

Blue H₂ 30 g CO₂e/

... a corridor between <u>160 –</u> <u>216 g</u> <u>CO₂e/kWh</u> can be achieved

kWh

2030 - 2040

2040 - 2050

Conservative Scenario

2020 - 2030

Blue H₂ 130 g CO₂e/ kWh

... a corridor between <u>195 –</u> <u>247 g</u> <u>CO2e/kWh</u> can be achieved

YYYY-MM-DD

Optimistic Scenario

Explanation

- by 2030, mainly natural gas in the system; in the short-term blue hydrogen available faster than green hydrogen; establishment of RE infrastructure for production of green H₂; development supported by EU and national hydrogen strategies
- Decades 2030 to 2040 transition to a hydrogen economy, ramp-up availability of H₂ with simultaneous decline in gas consumption in the power sector due to increasing renewable energies
- In the optimistic scenario, 2040 overall power plant portfolio are climate-neutral (i.a. for gas power plants through conversion to H₂, biogas, CCS etc.)

Why more realistic thresholds matter.

More realistic thresholds provide incentives to access green financing with contractual arrangements to lower emissions

Accelerating the transition

Competitive disadvantage for European manufacturing sites in international projects

Access to export credits and financing for international competitiveness

Gas-fired power stations enable the transition from lignite to renewables and can be used as a leverage to demand a faster coal phase out.

Eligibility for EU Recovery Fund and the Just Transition Fund

The explicit inclusion of transitional activities in the regulation is being ignored by the draft delegated act

Screening criteria don't differentiate between the two Gas-fired power generation might be excluded from capacity mechanisms

Review of EU State Aid Guidelines for Energy

Our proposal for a taxonomy that manages the transition to accelerate decarbonisation

- Screening criteria should clearly distinguish sustainable activities and transitional activities as mandated by the taxonomy regulation
- Thresholds for gas-fired power generations should be considered over the life-time of the asset, capped at 40 years, but reaching close to zero gCO2e/kWh by 2050
- The threshold for gas-fired power generation as a transitional activity should be increased to at least 250gCO2/kWh on average over the life-time of the asset (aligned with point 2)
- The threshold for gas-fired power generation to be considered as *doing no significant harm* should be based on best available technologies and aligned with the EU Electricity Regulation: 350gCO2/kWh or 700kg CO2/kW
- Gas network extension in the context of a coal-to-gas shift should be eligible if they are hydrogen-ready