

PEMS in the European vehicle emissions legislation: Milestones and challenges

SUN Conference

24-25 September 2013 Düsseldorf, Germany

Martin Weiss, Pierre Bonnel, Adolfo Perujo, Francesco Riccobono, Pablo Mendoza Villafuerte, Theodoros Vlachos

European Commission DG - Joint Research Centre (JRC) IET - Institute for Energy and Transport

The Joint Research Centre

JRC - the European Commission's in-house science service to support EU policy making

Role of the JRC

- Independent research and policy assessment
- Establishing empirical data and rationale for policy making
- Coordinating and guiding technical activities
- Cooperating with industry, member states, and research institutions

Setting the stage

- EU Air Quality Directive 2008/50/EU
 - Persisting NO₂ exceedance in urban areas

Environmental background

Annual mean, nitrogen dioxide, 2009, based on daily averages with percentage of valid measurements 75 % in µg/m³

- ≤ 20
- 20-40
- 40-42
- ≥ 42
- No data
- Outside data coverage

Source: Copyright EEA (2011)

Setting the stage

- EU Air Quality Directive 2008/50/EU
 - Persisting NO₂ exceedance in urban areas
 - Main contributor is road transport
- GHG emissions reductions of 20% Europe 2020 Strategy
- Long-term vision for transport in Europe 2011 Transport White Paper:
 - 60% CO₂ reduction by 2050
 - Halving the use of conventionally-fuelled cars in cities by 2030; phase them out in cities by 2050

Expectations

- Balancing environmental objectives with societal (mobility) and economic (competitiveness, jobs) objectives
- Emissions legislation and vehicle tests should be:
 - practical: technically feasible, simple, transparent, and cheap for manufacturers
 - effective: to ensure clean vehicles during use (not only in the test cell)
 - flexible: to accommodate future developments (vehicle technologies, state of knowledge, societal demands)
- PEMS offers multiple advantages over conventional vehicle testing in the laboratory

PEMS

Practicality and costs

• In-use conformity testing of heavy-duty engines and NRMM: PEMS avoids extracting engines from vehicles

Effectiveness

- Vehicle testing (mainly light-duty vehicles):
 - PEMS allows quantify real-world on-road emissions
 - PEMS forces an optimized design of increasingly complex emissions control technologies
 - PEMS can limit the use of defeat strategies
 - PEMS can ensure clean vehicles on the road

Regulations & Activities

Heavy-duty vehicles (type approval of the engine)

NRMM (type approval of the engine) Light-duty vehicles (type approval of the vehicle)

Regulations & Activities

Heavy-duty vehicles

- Regulations 582/2011 & 64/2012: Type approval and in-service conformity testing based on on-road testing with PEMS
- Verifying the conformity of engines on vehicles during normal use
- 'Real-world' emissions not explicitly addressed; aim is a functional and performance check of emissions control technologies
- Review of current procedures until the end of 2014
- PEMS-PM instrumentation evaluation completed; industry-run Pilot Program
- Until 2014, assessment of requirements for EURO VI+ engines under urban and lowload operation

NRMM

Light-duty vehicles

Regulations & Activities

NRMM

- Industry-run Pilot Program for in-service conformity testing completed in 2012
- PEMS implementation for Stage IV or V under discussion
- Likely adaptation of heavy-duty procedures to NRMM

Light-duty vehicles

Heavy-duty vehicles

Regulations & Activities

N N M M

Light-duty vehicles

- Regulation 715/2007 on Euro 5/6 limits aims "to ensure that real world emissions correspond to those measured at type approval. The use of portable emission measurement systems and the introduction of the 'not-to-exceed' regulatory concept should also be considered."
- Establishment on-road emissions in 2010
- Real-driving emissions (RDE) working group since 2011; development of a complementary test procedure since 2012
- Introduction of the complementary test procedure 2014/2017
- Feasibility of PEMS-PN under investigation (alternative: random cycles)

- Establishing on-road emission values
- JRC has tested 26 light-duty vehicles with PEMS until September 2013
- 4 standard test routes covering a wide range of driving conditions

- Real-driving emissions (RDE) working group to establish a complementary test procedure
- JRC coordinates the technical work
- Candidate procedures: Fixed test cycles

Random test cycles

PEMS on-road testing

Vehicle modeling

- Real-driving emissions (RDE) working group to establish a complementary test procedure
- JRC coordinates the technical work

Candidate procedures: Fixed test cycles

Random test cycles
PEMS on-road testing

Vehicle modeling

Random cycles	PEMS
+ less sensitive to changes in driver's behavior	+ wider coverage of driving conditions
+ less sensitive to climatic variability	+ test difficult to detect
+ long-term experience	+ prevents defeat strategies

 RDE working group develops on-road testing with PEMS as complementary test procedure until mid
 2014

Key issues – Test route

- coverage of normal driving conditions
- special attention to urban driving
- 30/30/30 split on low/medium/high (extrahigh speed) defined a priori
- Definition of maximum speed and idling shares

Key issues – Ambient conditions

- larger temperature range than current type approval
- Applying PEMS regulation on heavy-duty vehicles (?)

Key issues - Driving style, (micro) coverage of driving conditions, averaging of tests

- three data evaluation tools (TU Graz, TNO, JRC)
- weighing of driving data (TU Graz)
- binning/zoning of driving data (TNO, JRC)

Moving averaging window approach

Implemented for heavy-duty vehicles

How to determine the severity of on-road driving?

Moving averaging window approach

Key issues - Not-to-exceed (NTE) principle

- Aim is not to reproduce average driving but to cover the range of driving conditions
- Under permissible conditions, vehicles should be clean
- Accounting for statistical uncertainty: NTE>Euro 6
- Accounting for severity and variability in ambient conditions

Tentative time schedule

- Structured data base of PEMS tests from 10/2013
- One tool for data analysis chosen by end 2013/early 2014
- Fine tuning and vehicle testing until mid 2014
- Procedure drafting until mid 2014
- Implementation end 2014
- Binding NTE limits Euro 6c 2017

Martin Weiss (light-duty vehicles) martin.weiss@jrc.ec.europa.eu

Francesco Riccobono (particle emissions)
Francesco.riccobono@jrc.ec.europa.eu

Theodoros Vlachos
(light-duty vehicles)
theodoros.vlachos@jrc.ec.europa.eu

Pierre Bonnel (light-duty vehicles) pierre.bonnel@jrc.ec.europa.eu

Adolfo Perujo (heavy-duty vehicles and MNRM) adolfo.perujo@jrc.ec.europa.eu

Moving averaging window approach

MAW CO2 Emissions [g/km]

MAW Vehicle Average Speed [km/h]