

TYNDP 2017 - identification of problems

Contribution to the 3rd PCI process

Preliminary results

NSI East and SGC Regional Groups - 7 November 2016

ENTSOG System Development Team

Infrastructure gap under TYNDP 2017

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

Infrastructure gap under TYNDP 2017

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

entsog

Where are we in the TYNDP process?

- Strong cooperation with ACER and European Commission all along the process
- An intense interaction with Stakeholders
- Dialogue with ENTSO-E on TYNDP Scenarios

Infrastructure gap under TYNDP 2017

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

4 Demand Scenarios

Scenario		Slow Progression	Blue Transition	Green Evolution	EU Green Revolution
Category	Parameter				
Macroeconomic trends	EU on track to 2050 target?	Behind	On track	On track – National ambitions	On track / beyond - EU level ambitions
	Economic conditions	Limited growth	Moderate growth	Strong growth	Strong growth
	Green ambitions	Lowest	Moderate	High	Highest
	CO2 price	Lowest	Moderate	Highest	Highest
	Fuel prices	Highest	Moderate	Lowest	Lowest
Heating sector	Energy Efficiency improvement	Slowest	Moderate	Fastest	Fastest
	Competition with	Limited gas	Limited gas	Gas displaced by	Gas displaced by
	electricity	displacement by	displacement by	electricity (district	electricity (district
		elec. (new buildings)	elec. (new buildings)	heating, heat pumps)	heating, heat pump
	Electrification	Lowest	Moderate	High	Highest
Power sector	Renewables develop.	Lowest	Moderate	High	Highest
	Gas vs Coal	Coal before Gas	Gas before Coal	Gas before Coal	Gas before Coal
Transport sector	Gas in transport	Lowest	Highest	Moderate	Moderate
	Elec. in transport	Lowest	Moderate	Highest	Highest

Related ENTSO-E 2030 Visions

Vision 1

Vision 3

Vision 4

Vision 4

End-user demand

Stable to decreasing demand depending on energy efficiency gains and electrification of the heating sector

Gas for power demand

Stable to increasing demand depending on role of gas in RES back-up and substituting coal-fired generation

Overall gas demand

TYNDP assessment performed for the 3 on target scenarios

Several paths to achieving the EU targets

Energy Efficiency

- > 27% (resp. 30%) targets set against the 2007 PRIMES baseline for 2030 (total primary energy). In reference to the **2005 level**, it corresponds to **20% gains** (resp. **23%**)
- > Standard usages of gas already allow to achieve the EE target
- > Gas displacing other fuels, such as for power generation, further increases the gains

Several paths to achieving the EU targets

CO2 emissions

> The on-target scenarios achieve the target of 40% CO2 reduction compared to 1990

Renewables

- > TYNDP 2017 scenarios for power generation are based on ENTSO-E TYNDP 2016 Visions which comply with the EU RES-E target
- > TYNDP 2017 scenarios incorporate **biomethane**, a renewable gas source

CO2 emissions in 2030 – overall power demand and gas end-user demand

The gas grid is to be assessed for the different paths

Gas grid assessed both from an annual volume and high demand situation perspective

European gas and electricity demand – over the year and peak perspectives

Infrastructure gap under TYNDP 2017

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems

The TYNDP 2017 assessment frame

Low infra level analysis: Focus of today presentation

A multi-criteria analysis

Infrastructure gap under TYNDP 2017

- 1. TYNDP 2017 overview
- 2. The TYNDP Scenario framework
- 3. The TYNDP assessment frame
- 4. Identification of problems NSI East and SGC Region

Priority corridors: gas

infrastructure for the transmission of gas from the Caspian Basin, Central Asia, the Middle East and the Eastern Mediterranean Basin to the Union to enhance <u>diversification of gas supply</u>

infrastructure to <u>end the isolation</u> of the three Baltic States and Finland and their <u>dependency</u> on a <u>single</u> supplier, to reinforce internal grid infrastructures accordingly, and to <u>increase diversification</u> and <u>security of supplies</u> in the Baltic Sea region

infrastructure for <u>regional connections between</u> <u>and in</u> the Baltic Sea region, the Adriatic and Aegean Seas, the Eastern Mediterranean Sea and the Black Sea, and for <u>enhancing</u> <u>diversification</u> and <u>security</u> of gas supply

Identication of problems

Objective: share the TYNDP identification of problems

- > TYNDP assessment performed under an assumption of perfect market functioning
 - To avoid identifying needs where better market functioning would solve the issue
 - The assessment focuses on the infrastructure needs

The results allow to identify

- > The most impacted countries
- > The infrastructure limitations
- > Identified issues may be mitigated by different types of gas infrastructure

Decline of indigenous production leads to increased supply needs over time for 2 out of the 3 scenarios

EU supply mixes Retained supply potentials

EU supply mixes

Blue Transition

The low infrastructure level enables a wide range of supply mixes.

Azeri supply and local additional indigenous production enter the supply mix over time. 20

EU supply mixes

Green Revolution

The low infrastructure level enables a wide range of supply mixes.

Azeri supply and local additional indigenous production enter the supply mix over time. 21

Exposure to demand disruption

High demand situation

Disrupted rate and Remaining Flexibility

- > The **disrupted rate** indicates the share of a country's demand that cannot be covered. It is calculated under **cooperative behaviour** between countries
 - Countries will align their disruption rate if infrastructures allows for it
 - Non-alignement between countries indicate an infrastructure bottleneck
- > When a country does not face disruption, the **remaining flexibility** indicates the additional share of demand that the infrastructure would allow to cover. It is calculated non-simultaneously for each country.

Cases investigated

- > Normal situation
- > Specific route disruption cases: in this case we are interested in the <u>additional</u> <u>impact</u> compared to the normal situation case
- > Cases leading to demand disruption are presented

Security of supply

Exposure to demand disruption (normal situation)

The Region is generally able to cover its demand even under peak situation. Croatia is exposed to demand disruption in 2030.

Blue Transition

Remaining Flexibility 20% - 50% 0% - 20%

Exposure to demand disruption under normal situation

NSI East + South. Corridor

Disruption: HR
Green Rev: HR less disrupted
Low Rem Flex: PL, SI, RO
Green Rev: only RO

Exposure to demand disruption – under Belarus route disruption

High demand situation (peak day)

Blue Transition

Remaining Flexibility

20% - 50% 0% - 20%

Share of curtailed demand

50% - 100% 20% - 50% 0% - 20%

HR unchanged from normal situation

NSI East + South. Corridor

Exposure to demand disruption under Belarus route disruption

Disruption: PL in 2030 Green Rev: PL low Rem Flex

Security of supply

High demand situation (peak day)

Exposure to demand disruption - under Ukraine route disruption

Blue Transition

Remaining Flexibility

20% - 50% 0% - 20% Share of curtailed demand

50% - 100% 20% - 50% 0% - 20% HR unchanged from normal situation

Exposure to demand disruption under Ukraine route disruption

NSI East + South. Corridor

Disruption: BG, HR, HU, RO, GR in

2017

Green Rev: same

Improvement of the situation after 2017 is linked to the foreseen commissioning of projects in the region by 2020

Security of supply / Competition Dependence to supply sources

- > Dependence to a given supply source (CSSD) should be understood as the minimum share of this source necessary for a country to cover its demand on a yearly basis
- > Dependence is presented under **cooperative behaviour** between countries
 - Countries will align their mimimum source share (CSSD) if infrastructures allow for it
 - Non-alignement between countries indicate an infrastructure bottleneck
- > High CSSD level can inform both on security of supply and competition
 - In the case of LNG, being a multi-source supply, security of supply is not at stake

Results show:

- <u>no EU-level and no country-level</u> dependence to Norwegian*, Algerian, Libyan or Azeri supply
- EU-level but <u>no country-level dependence in the NSI East and Southern</u> <u>Corridor Regions</u> to LNG supply

Security of supply / Competition Dependence to Russian supply

entsog

Whole year

Blue Transition

> At EU level, no infrastructure limitation preventing full access to the other supply sources*

> **At country-level**, some highly dependent countries indicating infrastructure bottleneck

	NSI East + South. Corridor
Dependence to Russian supply above 25%	BG, RO, PL GE and GRev.: same but PL below 25%

*the EU-level dependency derive from the maximum supply potential from the other sources

Results for the other scenarios are provided in Annex

CSSD

50% - 100% 25% - 50% 15% - 25% 5% - 15% 0%-5%

Improvement of the situation after 2017 is linked to the foreseen commissioning of projects in the region by 2020;27 RO face infrastructure limitations in exporting its indigenous production

Competion - Access to Supply Sources

year

Access to Supply Sources is based on the SSPDi indicator

- > **SSPDi**: capacity of a country to reflect a given source low price in its supply bill (SSPDi: supply bill share impacted)
- > Access to Supply Sources indicates the number of sources for which SSPDi exceeds a 20% threshold

Blue Transition - Access to sources

NSI East + Southern Corridor Regions focus

LNG is a multi-source supply: results should be interpreted accordingly

Competion - Access to Supply Sources

Blue Transition - Access to sources

LNG is a multi-source supply: results should be interpreted accordingly

NSI East + Southern Corridor Regions focus

Improvement of the situation after 2017 is linked to the foreseen commissioning of projects in the region by 2020.

Competion - Access to Supply Sources

Whole year

Indigenous production fades out as a diversification option

Blue Transition - Access to sources

LNG is a multi-source supply: results should be interpreted accordingly

NSI East + Southern Corridor Regions focus

	NSI East + South. Corridor
Access to less than 3 supply sources (* including LNG)	BG, GR*, RO Barriers from GR to BG, RO to neighbours, West to East

 Countries accessing a limited number of supply sources also show high dependence to Russian gas

Price effects – LNG supply

LNG supply maximisation* (low LNG price) -

Green Evolution

Legend: price decrease compared to the balanced supply configuration (EUR/MWh)

LNG is a multi-source supply: results should be interpreted accordingly

Price effect: barriers to low price propagation	NSI East + South. Corridor
LNG Maximisation (low LNG price)	BG vs GR East vs West

Price effects – Russian supply

entsog

Whole year

Russian supply maximisation* (low RU price) - Green Evolution

Legend: price decrease compared to the balanced supply configuration (EUR/MWh)

Russian supply minimisation** (high RU price) - Green Evolution

Legend: price increase compared to the balanced supply configuration (EUR/MWh)

Barriers to low price propagation	NSI East + Southern Corridor
Russian Max. (low RU price)	East to West barrier: Eastern part can benefit from a decrease, then CZ and SK AT, DE and SI are less sensitive.

Barriers to high price mitigation	NSI East + Southern Corridor
Russian Min. (high RU price)	Countries are equally impacted except for RO due to its NP. ***In 2017, BG more impacted (higher price) than neighbours.

^{*}Price effects under supply maximisation configuration based on SSPDi – Consider SSPDi when interpreting **Price effects under supply minimisation configuration based on CSSD

Market integration - Price spreads

- > Handled through a simulation focusing on Russian supply price information
 - Input: EC quarterly report Q1-16 EBP2 information* (European Border Price: Russia)
 - Price spreads measured to German border price
- > Marginal prices simulated for 2017

Market integration - Price spreads

around 0

	NSI East + Southern Corridor	
Price spreads	BG (in 2017), CZ, HR, HU, PL, RO, SK	

Conclusions – NSI East

	NSI East
Isolation	СУ
Exposure to demand disruption	HR PL (2030 – Blue Transition) in case Belarus route disruption BG, GR (2017), HU, RO in case of Ukraine route disruption
Increased supply needs calling for diversified supply	EU wide
Dependence or access to limited number of supply sources (* including LNG)	BG, GR*, RO Barriers from GR to BG, RO to neighbours, West to East
Price effects - Barriers to LNG low price propagation - Barriers to RU low price propagation	BG vs GR East vs West West vs East barrier: AT, DE , SI vs East; CZ, SK vs East
- Barriers to RU high price mitigation	BG vs neighbours; neighbours vs RO
Price spreads	BG, CZ, HR, HU, PL, RO, SK

- > The results allow to identify the most impacted countries and infrastructure limitations
- > Identified issues may be mitigated by different types of gas infrastructure

Conclusions – Southern Gas Corridor

	Southern Corridor
Isolation	Relevant for NSI East
Exposure to demand disruption	BG, GR (2017), HU, RO in case of Ukraine route disruption
Increased supply needs calling for diversified supply	EU wide
Dependence or access to limited number of supply sources (* including LNG)	BG, GR*, RO Barriers from GR to BG, RO to neighbours, West to East
Price effects - Barriers to LNG low price propagation - Barriers to RU low price propagation	Relevant for NSI East Relevant for NSI East
- Barriers to RU high price mitigation	BG vs neighbours; neighbours vs RO
Price spreads	Relevant for NSI East

- > The results allow to identify the **most impacted countries** and **infrastructure limitations**
- > Identified issues may be mitigated by different types of gas infrastructure

Thank You for Your Attention

Céline Heidrecheid System Development Business Area Manager

ENTSOG -- European Network of Transmission System Operators for Gas Avenue de Cortenbergh 100, B-1000 Brussels

EML: Celine.heidrecheid@entsog.com

WWW: www.entsog.eu

Infrastructure gap under TYNDP 2017

Annex

Demand – NSI East and SGC focus

CY gasification demand cannot be covered under the Low infra level as necessary infrastructures are missing

Overall demand evolution – country-level

Total annual gas demand evolution – 2017 to 2035

Sectoral demand evolution – country-level

Evolution of annual end-user gas demand in the period 2017-2035

Evolution of annual gas demand for power generation in the period 2017-2035.

Dependence to Russian gas

Security of supply / Competition Dependence to LNG supply*

Whole year

- > At EU level, no infrastructure limitation preventing full access to the other supply sources**
- > At country-level, some highly dependent countries indicating infrastructure bottleneck

*LNG is a multi-source supply: results should be interpreted accordingly

	•
	NSI East + South. Corridor
Dependence to LNG supply (25% - 50%)	No dependency

CSSD 50% - 100% 25% - 50% 15% - 25% 5% - 15% 0%-5%

^{**}the EU-level dependency derive from the maximum supply potential from the other sources
***The FR situation is remedied by 2020 thanks to the commissioning of a project