The future of COVID-19: evolutionary and immunological lessons from other viruses

Department of Infectious Disease Epidemiology London School of Hygiene & Tropical Medicine

> NITAG meeting March 2021

Motivation

- Childhood immunisation programmes have led to elimination of viruses with little antigenic variation such as measles and rubella in many countries.
- But viruses such as influenza undergo frequent antigenic turnover, necessitating regular vaccine updates and re-vaccination.
- What might the future of COVID-19 look like?

Effectiveness of available vaccines

Pathogen	Vaccine effectiveness (%, mean, 95% CI)	Basic reproduction number, R ₀
Measles	96 (72–99)	12.0 (6.0–18.0)
Mumps	86 (65–92)	4.2 (3.6–4.5)
Rubella	89 (58–97)	4.7 (3.4–7.8)
Varicella	95 (92–97)	6.5 (3.3–16.9)
SARS-CoV-2 (pre-B.1.1.7)	86 (76–97)*	2.7 (1.5–3.8)
SARS-CoV-2 (B.1.1.7)	86 (76–97)*	4.5 (2.5–6.4)
Influenza A/H1N1 (post- 2009)	61 (57–65)	1.4 (1.2–2.0)
Influenza A/H3N2	33 (22–43)	2.1 (1.6–2.5)
Influenza B	54 (46–61)	2.1 (1.6–2.5)

^{*}two dose BNT162b2 effectiveness against infection, with single dose at 72% (58-86%) [Hall et al, SSRN]

 $HIT = 1 - 1/R_0$

Pathogen	Vaccine effectiveness (%, mean, 95% CI)	Basic reproduction number, R ₀	Herd immunity threshold (%)
Measles	96 (72–99)	12.0 (6.0–18.0)	92 (83-94)
Mumps	86 (65–92)	4.2 (3.6–4.5)	76 (72-78)
Rubella	89 (58–97)	4.7 (3.4–7.8)	79 (71-87)
Varicella	95 (92–97)	6.5 (3.3–16.9)	85 (70-94)
SARS-CoV-2 (pre-B.1.1.7)	86 (76–97)*	2.7 (1.5–3.8)	63 (35-74)
SARS-CoV-2 (B.1.1.7)	86 (76–97)*	4.5 (2.5–6.4)	78 (61-84)
Influenza A/H1N1 (post- 2009)	61 (57–65)	1.4 (1.2–2.0)	29 (17-50)
Influenza A/H3N2	33 (22–43)	2.1 (1.6–2.5)	51 (38-60)
Influenza B	54 (46–61)	2.1 (1.6–2.5)	51 (38-60)

^{*}two dose BNT162b2 effectiveness against infection, with single dose at 72% (58-86%) [Hall et al, SSRN]

 $HIT = 1 - 1/R_0$

Pathogen	Vaccine effectiveness (%, mean, 95% CI)	Basic reproduction number, R ₀	Herd immunity threshold (%)
Measles	96 (72–99)	12.0 (6.0–18.0)	92 (83-94)
Mumps	86 (65–92)	4.2 (3.6–4.5)	76 (72-78)
Rubella	89 (58–97)	4.7 (3.4–7.8)	79 (71-87)
Varicella	95 (92–97)	6.5 (3.3–16.9)	85 (70-94)
SARS-CoV-2 (pre-B.1.1.7)	86 (76–97)*	2.7 (1.5–3.8)	63 (35-74)
SARS-CoV-2 (B.1.1.7)	86 (76–97)*	4.5 (2.5–6.4)	78 (61-84)
Influenza A/H1N1 (post- 2009)	61 (57–65)	1.4 (1.2–2.0)	29 (17-50)
Influenza A/H3N2	33 (22–43)	2.1 (1.6–2.5)	51 (38-60)
Influenza B	54 (46–61)	2.1 (1.6–2.5)	51 (38-60)

*two dose BNT162b2 effectiveness against infection, with single dose at 72% (58-86%) [Hall et al, SSRN]

HIT = 1	$- 1/R_0$
---------	-----------

Pathogen	Vaccine effectiveness (%, mean, 95% CI)	Basic reproduction number, R ₀	Herd immunity threshold (%)
Measles	96 (72–99)	12.0 (6.0–18.0)	92 (83-94)
Mumps	86 (65–92)	4.2 (3.6–4.5)	76 (72-78)
Rubella	89 (58–97)	4.7 (3.4–7.8)	79 (71-87)
Varicella	95 (92–97)	6.5 (3.3–16.9)	85 (70-94)
	86 (76–97)*	2.7 (1.5–3.8)	63 (35-74)
	86 (76–97)*	4.5 (2.5–6.4)	78 (61-84)
Influenza A/H1N1 (post- 2009)	61 (57–65)	1.4 (1.2–2.0)	29 (17-50)
Influenza A/H3N2	33 (22–43)	2.1 (1.6–2.5)	51 (38-60)
Influenza B	54 (46–61)	2.1 (1.6–2.5)	51 (38-60)

*two dose BNT162b2 effectiveness against infection, with single dose at 72% (58-86%) [Hall et al, SSRN]

 $HIT = 1 - 1/R_0$

Pathogen	Vaccine effectiveness (%, mean, 95% CI)	Basic reproduction number, R ₀	Herd immunity threshold (%)
Measles	96 (72–99)	12.0 (6.0–18.0)	92 (83-94)
Mumps	86 (65–92)	4.2 (3.6–4.5)	76 (72-78)
Rubella	89 (58–97)	4.7 (3.4–7.8)	79 (71-87)
Varicella	95 (92–97)	6.5 (3.3–16.9)	85 (70-94)
SARS-CoV-2 (pre-B.1.1.7)	86 (76–97)*	2.7 (1.5–3.8)	63 (35-74)
SARS-CoV-2 (B.1.1.7)	86 (76–97)*	4.5 (2.5–6.4)	78 (61-84)
Influenza A/H1N1 (post- 2009)	61 (57–65)	1.4 (1.2–2.0)	29 (17-50)
Influenza A/H3N2	33 (22–43)	2.1 (1.6–2.5)	51 (38-60)
Influenza B	54 (46–61)	2.1 (1.6–2.5)	51 (38-60)

^{*}two dose BNT162b2 effectiveness against infection, with single dose at 72% (58-86%) [Hall et al, SSRN]

What about additional immunity from natural infections?

What about additional immunity from natural infections?

Seasonal coronaviruses undergo antigenic evolution like influenza

Human coronavirus 229E:

Influenza A/H3N2 (2005–17):

Seasonal coronaviruses undergo antigenic evolution like influenza

Human coronavirus 229E:

Influenza A/H3N2 (2005–17):

HCoV-229E antibody responses reduced to subsequent viruses

Adaptation rate in receptor-binding domain similar to influenza B

Also need to consider combinations of mutations

Locations of mutations that escape common monoclonal antibodies:

	escape mutations		
viral lineage	class 1	class 2	class 3
B.1.1.7	_	_	-
B.1.351	K417N	E484K	-
P.1	K417T	E484K	-
P.2	_	E484K	-
B.1.429	_	_	L452R
B.1.526	_	E484K	_

Standardised genomic, immunological and epidemiological data could provide insights into future multi-variant dynamics

Summary

- Influenza B and seasonal coronaviruses could be useful conceptual model for future SARS-CoV-2 evolutionary dynamics
- Vaccination-induced herd immunity against B.1.1.7 unlikely with current vaccines unless: i) children also vaccinated or ii) substantial natural immunity also accumulated.
- Potential for SARS-CoV-2 immune escape largest in areas of high prevalence and accumulating immunity
- Standardisation and sharing of multiple data sources will be important for tracking evolutionary dynamics