

TENERIFE BLACK-OUT

July, 15th 2020

Tenerife Characteristics

- > Isolated system (planned interconnection with La Gomera island)
 - Central dispatching model.
 - Low network mesh and concentrated generation (orography conditions).
 - Reserve levels (according to Operation Procedures): 97,98 MW to rump-up & 189 MW to rump-down.

> Installed capacity (1225 MW)

- Thermal capacity 918 MW: Granadilla (693 MW), Candelaria (139 MW), Arona (43MW), Guía de Isora (43MW).
- Renewable capacity 307 MW: 196 MW (eolic) + 107 MW (photovoltaic)

Black-Out Incident (1/3)

> Before the incident

• Demand: 424 MW

Generation mix: 15% RES (wind/solar)

85% Thermal (steam/diesel/combined-cycle).

Granadilla Total Output: 339 MW (94% demand)

■ Granadilla CC-I: Gas 3 + Vapour 3: 53,2 MW + 31,0 MW (84,2 MW)

Granadilla CC-II: Gas 5 + Vapour 4: 52,5 MW + 26,0 MW (78,5 MW)

> Incident timeline

- 09:41 → Granadilla Gas 3 is accidentally manually triggered. Vapour 3 triggers.
 Frequency drops to 48,897 Hz.
- +5,2s → Granadilla Gas 5 rumps-up to its maximum output, and trips due to high temperature gradient of exhaust gases.

Frequency drops to 48,066 Hz \rightarrow automatic under-frequency control scheme activates.

• +2m5s → Granadilla Vapour 4 triggers .

The performance of the automatic under-frequency control scheme was not enough to compensate the progressive generation loss.

• 09:44 → Frequency drops, all generation groups trigger, the black-out occurs.

Supply interruption: 424 MW

Estimated Non Supplied Energy: 1.913 MWh

• Clients affected: over 515.000

> Incident timeline

Generation and frequency variation during incident:

> Incident timeline

Frequency variation during incident:

> Tenerife system restoration plan

- Connection of <u>power sources with black start</u> and island operation capabilities: Granadilla & Candelaria gas turbines.
- 2. <u>Coupling of Granadilla & Candelaria gas turbines.</u>
- 3. <u>Bottom-up demand re-energisation</u> in a controlled and safe way.
- 4. Supply re-energisation is completed at 16:44, once there is enough generation to supply all the demand.

Progressive generation coupling

> Progressive supply re-energisation

Time	% Supply re-energised
10:45	4% (20.688 clients)
11:30	10 % (51.521 clients)
12:30	20 % (103.042 clients)
13:20	40 % (206.085 clients)
14:40	50 % (257.605 clients)
15:15	60 % (309.127 clients)
15:40	80 % (412.169 clients)
16:45	100 % (515.211 clients)

Actual Supply vs Forecasted Supply

Assesment and Conclusions (1/2)

- ➤ On Wednesday, July 15th, 2020, Tenerife suffered an electrical blackout, starting at 09:41. All substations that feed the distribution network had tension at 12:00, and full supply reenergization occurred at 16:44.
- Investigation and determination of liabilities on-going by regional authorities.

Difficulties

- Tenerife is an <u>isolated system</u>, with <u>low meshed grid</u>.
- Thermal generation is mainly <u>concentrated</u> in 2 sites.

Achievements

- Effectiveness of Restoration Plan
- Proper functioning of the control and command centers of the TSO & DSO.

Assesment and Conclusions (2/2)

Conclusions

- <u>Interconnection is essential</u> to ensure operational security and to facilitate system restoration.
- Grid development and reinforcement is key to achieve a more meshed and robust transmission system. <u>Storage systems</u> would strengthen the transmission system and the system operation, specially regarding RES implementation target (NECP 2030).

- Improve reliability of generation groups, trying to avoid undesired triggers and to speed up black start processes.
- TSO/DSOs should review, update & guarantee the <u>proper implementation and function</u> of the automatic underfrequency control scheme and other emergency plans.

Thank you for your attention